CPP Coordinate System: Difference between revisions
From XMS Wiki
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
<!--:newpoint<sub>x</sub> = R * (point<sub>longitude</sub> - origin<sub>longitude</sub>) * cos(origin<sub>latitude</sub>) | <!--:newpoint<sub>x</sub> = R * (point<sub>longitude</sub> - origin<sub>longitude</sub>) * cos(origin<sub>latitude</sub>) | ||
:newpoint<sub>y</sub> = point<sub>latitude</sub> * R--> | :newpoint<sub>y</sub> = point<sub>latitude</sub> * R--> | ||
:<math>\text{newpoint}_x = R * \Big( \text{point}_{\text{longitude}}- \text{origin}_{\text{longitude}} \Big) * \cos \Big( \text{origin}_{\text{latitude}} \Big)</math> | |||
:<math>\ \text{newpoint}_y = \text{point}_{\text{longitude}} * R </math>-- | :<math>\ \text{newpoint}_y = \text{point}_{\text{longitude}} * R </math> | ||
[[Image:cppcoordsys1.gif]] | <!--[[Image:cppcoordsys1.gif]]--> | ||
Line 15: | Line 15: | ||
<!--:newpoint<sub>longitude</sub> = origin<sub>longitude</sub> + point<sub>x</sub> / (R * cos(origin<sub>latitude</sub>)) | <!--:newpoint<sub>longitude</sub> = origin<sub>longitude</sub> + point<sub>x</sub> / (R * cos(origin<sub>latitude</sub>)) | ||
:newpoint<sub>latitude</sub> = point<sub>y</sub> / R--> | :newpoint<sub>latitude</sub> = point<sub>y</sub> / R--> | ||
:<math>\text{newpoint}_{\text{longitude}} = \frac{\text{origin}_{\text{longitude}} + \text{point}_x}{R * \cos \big( \text{origin}_{\text{latitude}} \big)}</math> | |||
:<math>\ \text{newpoint}_{\text{latitude}} = \frac{\text{point}_y}{R} </math>-- | :<math>\ \text{newpoint}_{\text{latitude}} = \frac{\text{point}_y}{R} </math> | ||
[[Image:cppcoordsys2.gif]] | <!--[[Image:cppcoordsys2.gif]]--> | ||
Revision as of 16:49, 5 September 2012
A CPP (Carte Parallelo-Grammatique Projection) system is a local system. The origin of the system must be defined in latitude/longitude decimal degrees.
The conversion from of a point from latitude/longitude to CPP is:
The conversion of a point from CPP to latitude/longitude is:
R = 6378206.4 m. (Clarke 1866 major spheroid radius)