HY8:AOP SS Align and Size Culvert: Difference between revisions

From XMS Wiki
Jump to navigationJump to search
No edit summary
No edit summary
Line 2: Line 2:
[[Image:AopStreamSimulationAlignAndSize.jpg]]
[[Image:AopStreamSimulationAlignAndSize.jpg]]


This dialog will allow you to make changes to the layout and size of your culvert and immediately see the results in the Aquatic Organism Passage.  It will also allow you to hit one button, and have HY-8 change the size of the culvert until it is the smallest culvert barrel size that still allows passage.  Before you optimize the culvert, you need to verify that the site data of the culvert is correct.  Also recognize that there is no undo or cancel on optimize or any changes made to the culvert alignment and size.
This dialog will allow you to make changes to the layout and size of your culvert and immediately see the results in the Aquatic Organism Passage.  It will also allow you to hit a button, and have HY-8 change the size of the culvert until it is the smallest culvert barrel size that still allows passage for shear, and then for shear and velocity.  Before you optimize the culvert, you need to verify that the site data of the culvert is correct.  Also recognize that there is no undo or cancel on optimize or any changes made to the culvert alignment and size.


==Align and Size Culverts==
==Align and Size Culverts==
Line 8: Line 8:


==Aquatic Organism Passage Results==
==Aquatic Organism Passage Results==
The Right side of the dialog reports the Aquatic Organism Passage results.  It starts with stability of the culvert bed under High FlowFirst, it checks if the culvert bed's upper layer is stable under high flow.  It does this by comparing the shear applied to the shear permissible to the culvert bed's upper layerIf the permissible shear is greater, then it is stable.  If that fails, the bed mobility may still be acceptable, as long as the shear applied to the culvert bed, is less than the maximum shear applied to the cross-sections immediately upstream or downstream of the culvert crossing.
===Embedment Depth Check===
The Right side of the dialog reports the Aquatic Organism Passage results.  It starts with the embedment levelThe level of embedment depends on the layers that are required, the gradations of those layers, and the shape of the culvert.  There is a button that will adjust the embedment to match the level of the tailwater channel invert, so there isn't a perch or bump at the culvert outlet.


Next it checks the stability of the culvert bed under Peak flow.  First it checks if the culvert bed's upper layer is stable under peak flow.   It does this by comparing the shear applied to the shear permissible to the culvert bed's upper layer.  If the permissible shear is greater, then it is stable.  If the user has enabled the culvert bed's lower layer, it will then check if the culvert bed's lower layer is stable under peak flow.  It does this by comparing the shear applied to the shear permissible to the culvert bed's lower layerFor the user's ability to compare, the maximum shear applied to the reach cross-section under peak flow is reported, although it is not used in these calculations.
===Culvert Bed Stability Under High Flows===
Next is the stability of the culvert bed under High Flow.  First, it checks if the culvert bed's upper layer is stable under high flow. It does this by comparing the shear applied to the shear permissible to the culvert bed's upper layer.  If the permissible shear is greater, then it is stable.  If that fails, the bed mobility may still be acceptable.  First HY-8 determines if the streambed is mobile.  If the applied shear on all cross-section are above the permissible shear, then all cross-section will be eroding and the streambed will be mobile.  If the bed is mobile and as long as the shear applied to the culvert bed, is less than the maximum shear applied to the cross-sections immediately upstream or downstream of the culvert crossing, then the mobility is acceptableIf the bed is NOT mobile or if the culvert's shear is higher than the maximum shear in the cross sections, it is not acceptable.


For more information on the optimize button, see below.
===Culvert Bed Stability Under Peak Flows===
The next section is where HY-8 checks the stability of the culvert bed under Peak flow.  First it checks if the culvert bed's upper layer is stable under peak flow.  It does this by comparing the shear applied to the shear permissible to the culvert bed's upper layer.  If the permissible shear is greater, then it is stable.  If it is unstable, HY-8 will determine the gradation that will be stable.  The user can then specify their own gradation to be used in the calculations.  For the user's ability to compare, the maximum shear applied to the reach cross-section under peak flow is reported, although it is not used in these calculations.
===Culvert Velocity Check===
The third check is the velocity under high flow.  HY-8 determines the maximum average velocity within the barrel when it determines the water surface elevations through direct step.  It then compares this velocity with the maximum average velocity computed using the Manning's Equation at the cross-sections. As long as the culvert's velocity is less than the velocity in the cross-sections, the velocity is acceptable.
The third check is the velocity under high flow.  HY-8 determines the maximum average velocity within the barrel when it determines the water surface elevations through direct step.  It then compares this velocity with the maximum average velocity computed using the Manning's Equation at the cross-sections. As long as the culvert's velocity is less than the velocity in the cross-sections, the velocity is acceptable.


For more information on the optimize button, see below.
==Culvert Depths===
The final check is the depth in the culvert under low flow.  HY-8 determines the minimum depth within the barrel when it determines the water surface elevations through direct step.  It then compares the minimum depth in the culvert, with the minimum depth in the cross section that is computed by the Manning's Equation.   
The final check is the depth in the culvert under low flow.  HY-8 determines the minimum depth within the barrel when it determines the water surface elevations through direct step.  It then compares the minimum depth in the culvert, with the minimum depth in the cross section that is computed by the Manning's Equation.   


Line 20: Line 31:
==Optimize Culvert Barrel Size==
==Optimize Culvert Barrel Size==


Near the bottom of this dialog is the 'Optimize Culvert Barrel Size'.  This will change the size of the culvert barrel to 4' and turn off the low flow channel.  HY-8 will then increase the barrel size until the requirements for aquatic organism passage is accomplished and the culvert bed is stable (or acceptable).  If the toggle box to optimize velocities is checked, then HY-8 will continue to increase the size of barrel until the velocity is acceptable.  Finally, it will check the depth and create a low flow channel if necessary.
Near the bottom of this dialog is the 'Optimize Culvert Barrel Size'.  This will change the size of the culvert barrel to 4' and turn off the low flow channel.  HY-8 will then increase the barrel size until the culvert bed is stable (or acceptable).  If the optimize button in the velocities section is clicked, then HY-8 will continue to increase the size of barrel until the velocity is acceptable.   


[[Image:AopStreamSimulationOptimize.jpg]]
[[Image:AopStreamSimulationOptimize.jpg]]
Line 26: Line 37:
HY-8 will launch the Optimize dialog that will show each calculation being performed and the result of that run.  It will also allow you to cancel if HY-8 is taking too long to optimize.  Eventually, HY-8 will give up on finding an optimized culvert.
HY-8 will launch the Optimize dialog that will show each calculation being performed and the result of that run.  It will also allow you to cancel if HY-8 is taking too long to optimize.  Eventually, HY-8 will give up on finding an optimized culvert.


The Optimize Culvert Barrel Size will modify the values of the culvert barrel size that will change the results in the AOP dialog and the Culvert Crossing Input Data and the View Culvert Crossing Results Dialog.  There is no undo or cancel on this option.  It is recommended that if you wish to be able to return to the state before optimizing the culvert size, that you save the crossing to a file.
The Optimization routine will modify the values of the culvert barrel size that will change the results in the AOP dialog and the Culvert Crossing Input Data and the View Culvert Crossing Results Dialog.  There is no undo or cancel on this option.  It is recommended that if you wish to be able to return to the state before optimizing the culvert size, that you save the crossing to a file.


{{HY8Main}}
{{HY8Main}}
[[Category:AOP|S]]
[[Category:AOP|S]]

Revision as of 23:53, 26 June 2014

AOP Stream Simulation, Align and Size Culvert

AopStreamSimulationAlignAndSize.jpg

This dialog will allow you to make changes to the layout and size of your culvert and immediately see the results in the Aquatic Organism Passage. It will also allow you to hit a button, and have HY-8 change the size of the culvert until it is the smallest culvert barrel size that still allows passage for shear, and then for shear and velocity. Before you optimize the culvert, you need to verify that the site data of the culvert is correct. Also recognize that there is no undo or cancel on optimize or any changes made to the culvert alignment and size.

Align and Size Culverts

The left side of the dialog contains the same spreadsheet that is available on the right side of the Crossing Input Data Dialog. Any changes made on this page, will change the data that is shown in that dialog. There is no undo or cancel on this page. For more information is available at Culvert Data

Aquatic Organism Passage Results

Embedment Depth Check

The Right side of the dialog reports the Aquatic Organism Passage results. It starts with the embedment level. The level of embedment depends on the layers that are required, the gradations of those layers, and the shape of the culvert. There is a button that will adjust the embedment to match the level of the tailwater channel invert, so there isn't a perch or bump at the culvert outlet.

Culvert Bed Stability Under High Flows

Next is the stability of the culvert bed under High Flow. First, it checks if the culvert bed's upper layer is stable under high flow. It does this by comparing the shear applied to the shear permissible to the culvert bed's upper layer. If the permissible shear is greater, then it is stable. If that fails, the bed mobility may still be acceptable. First HY-8 determines if the streambed is mobile. If the applied shear on all cross-section are above the permissible shear, then all cross-section will be eroding and the streambed will be mobile. If the bed is mobile and as long as the shear applied to the culvert bed, is less than the maximum shear applied to the cross-sections immediately upstream or downstream of the culvert crossing, then the mobility is acceptable. If the bed is NOT mobile or if the culvert's shear is higher than the maximum shear in the cross sections, it is not acceptable.

For more information on the optimize button, see below.

Culvert Bed Stability Under Peak Flows

The next section is where HY-8 checks the stability of the culvert bed under Peak flow. First it checks if the culvert bed's upper layer is stable under peak flow. It does this by comparing the shear applied to the shear permissible to the culvert bed's upper layer. If the permissible shear is greater, then it is stable. If it is unstable, HY-8 will determine the gradation that will be stable. The user can then specify their own gradation to be used in the calculations. For the user's ability to compare, the maximum shear applied to the reach cross-section under peak flow is reported, although it is not used in these calculations.

Culvert Velocity Check

The third check is the velocity under high flow. HY-8 determines the maximum average velocity within the barrel when it determines the water surface elevations through direct step. It then compares this velocity with the maximum average velocity computed using the Manning's Equation at the cross-sections. As long as the culvert's velocity is less than the velocity in the cross-sections, the velocity is acceptable.

For more information on the optimize button, see below.

Culvert Depths=

The final check is the depth in the culvert under low flow. HY-8 determines the minimum depth within the barrel when it determines the water surface elevations through direct step. It then compares the minimum depth in the culvert, with the minimum depth in the cross section that is computed by the Manning's Equation.

If the depth is too shallow, the user can create a low flow channel in the embedment. The side slope of the low flow channel is 1:8 (V:H), but the depth can be adjusted by the user. The shape of the embedded culvert will be modified in the computations and in the front view of the culvert. This change will affect the computations in the Culvert Crossing Output Dialog as well.

Optimize Culvert Barrel Size

Near the bottom of this dialog is the 'Optimize Culvert Barrel Size'. This will change the size of the culvert barrel to 4' and turn off the low flow channel. HY-8 will then increase the barrel size until the culvert bed is stable (or acceptable). If the optimize button in the velocities section is clicked, then HY-8 will continue to increase the size of barrel until the velocity is acceptable.

AopStreamSimulationOptimize.jpg

HY-8 will launch the Optimize dialog that will show each calculation being performed and the result of that run. It will also allow you to cancel if HY-8 is taking too long to optimize. Eventually, HY-8 will give up on finding an optimized culvert.

The Optimization routine will modify the values of the culvert barrel size that will change the results in the AOP dialog and the Culvert Crossing Input Data and the View Culvert Crossing Results Dialog. There is no undo or cancel on this option. It is recommended that if you wish to be able to return to the state before optimizing the culvert size, that you save the crossing to a file.