SMS:Lund Cirp and Watanabe Formula: Difference between revisions
No edit summary |
|||
(18 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The Lund Cirp and Watanabe formula can be found on page 16 of the ''Two-Dimensional Depth-Averaged Circulation Model CMS-M2D: Version 3.0, Report 2, Sediment Transport and Morphology Change TR''<ref>Aug. 2006 - Two-Dimensional Depth-Averaged Circulation Model CMS-M2D: Version 3.0, Report 2, Sediment Transport and Morphology Change TR [http://cirp.usace.army.mil/Downloads/PDF/TR-06-9.pdf]</ref>. | The Lund Cirp and Watanabe formula can be found on page 16 of the ''Two-Dimensional Depth-Averaged Circulation Model CMS-M2D: Version 3.0, Report 2, Sediment Transport and Morphology Change TR''<ref name=Lund>Aug. 2006 - Two-Dimensional Depth-Averaged Circulation Model CMS-M2D: Version 3.0, Report 2, Sediment Transport and Morphology Change TR [http://cirp.usace.army.mil/Downloads/PDF/TR-06-9.pdf]</ref>. | ||
:<math>q_{tot} = A \ | The total load sediment transport rate of Watanabe is given by: | ||
:<math>q_{tot} = A \biggl[ \frac {(\tau_{b,max}-\tau_{cr})U_{c}}{p_{w}g} \biggr] </math> | |||
:where | |||
:''q<sub>tot</sub>'' = total load (both suspended and bed load) | |||
:''τ<sub>b,max</sub>'' = maximum shear stress at the bed | |||
:''τ<sub>cr</sub>'' = shear stress at incipient sediment motion | |||
:''U<sub>c</sub>'' = depth averaged current velocity | |||
:''ρ<sub>w<sub>'' = density of water | |||
:''g'' = acceleration of gravity | |||
:''A'' = empirical coefficient typically ranging from 0.1 to 2 | |||
== Transport Slope Coefficient == | == Transport Slope Coefficient == | ||
The Transport Slope Coefficient can be found on page 32 of the ''Two-Dimensional Depth-Averaged Circulation Model CMS-M2D: Version 3.0, Report 2, Sediment Transport and Morphology Change TR''<ref> | The Transport Slope Coefficient can be found on page 32 of the ''Two-Dimensional Depth-Averaged Circulation Model CMS-M2D: Version 3.0, Report 2, Sediment Transport and Morphology Change TR''<ref name=Lund />. | ||
:<math>\bar q'_{tot,x} = \bar q_{tot,x} + D_s \left\vert \bar q_{tot} \right\vert \frac {\partial h}{\partial x}</math> | |||
:<math>\bar q'_{tot,y} = \bar q_{tot,y} + D_s \left\vert \bar q_{tot} \right\vert \frac {\partial h}{\partial y}</math> | |||
:D<sub>s</sub> = empirical slope coefficient with typical range of 5 to 30. | |||
The Transport Slope Coefficient can vary site by site and even within a single site domain in that some areas have constraints with naturally occurring steep bed slopes (e.g., channels) and other areas have gentle slopes (e.g. beach profiles, or tidal flats). It is a diffusion coefficent for increasing downhill transport or decreasing uphill transport (if D is >1) This is a good parameter to use as a morphology change calibration factor (along with the scalesus and scalebed coefficients). One thing to note is that what may calibrate well for one area will not calibrate well for another so an average value may be necessary. | The Transport Slope Coefficient can vary site by site and even within a single site domain in that some areas have constraints with naturally occurring steep bed slopes (e.g., channels) and other areas have gentle slopes (e.g. beach profiles, or tidal flats). It is a diffusion coefficent for increasing downhill transport or decreasing uphill transport (if D is >1) This is a good parameter to use as a morphology change calibration factor (along with the scalesus and scalebed coefficients). One thing to note is that what may calibrate well for one area will not calibrate well for another so an average value may be necessary. | ||
===Additional Information=== | ===Additional Information=== | ||
:Karambas, T.V. 2003. "Nonlinear wave modeling and sediment transport in the surf and swash zone," Advances in Coastal Modeling, V.C. Lakhan (ed.), Elsevier Oceanography Series, 67, Amsterdam, The Netherlands, 267-298 | |||
:Larson, M., Hanson, H., and Kraus, N.C. 2003. "Numerical modeling of beach topography change," Advances in Coastal Modeling, V.C. Lakhan (ed.), Elsevier Oceanography Series, 67, Amsterdam, The Netherlands, 337-365 | |||
Chapter 4 of | Chapter 4 of | ||
:Horikawa, K. 1988. (ed.) "Nearshore dynamics and coastal processes. Theory, measurement, and predictive models," University of Tokyo Press, Tokyo, Japan | |||
= Related Topics = | = Related Topics = | ||
Line 31: | Line 44: | ||
[[Category:Equations]] | [[Category:Equations]] | ||
[[Category:External Links]] | [[Category:External Links]] | ||
[[Category:Citation]] |
Latest revision as of 20:19, 16 November 2017
The Lund Cirp and Watanabe formula can be found on page 16 of the Two-Dimensional Depth-Averaged Circulation Model CMS-M2D: Version 3.0, Report 2, Sediment Transport and Morphology Change TR[1].
The total load sediment transport rate of Watanabe is given by:
- where
- qtot = total load (both suspended and bed load)
- τb,max = maximum shear stress at the bed
- τcr = shear stress at incipient sediment motion
- Uc = depth averaged current velocity
- ρw = density of water
- g = acceleration of gravity
- A = empirical coefficient typically ranging from 0.1 to 2
Transport Slope Coefficient
The Transport Slope Coefficient can be found on page 32 of the Two-Dimensional Depth-Averaged Circulation Model CMS-M2D: Version 3.0, Report 2, Sediment Transport and Morphology Change TR[1].
- Ds = empirical slope coefficient with typical range of 5 to 30.
The Transport Slope Coefficient can vary site by site and even within a single site domain in that some areas have constraints with naturally occurring steep bed slopes (e.g., channels) and other areas have gentle slopes (e.g. beach profiles, or tidal flats). It is a diffusion coefficent for increasing downhill transport or decreasing uphill transport (if D is >1) This is a good parameter to use as a morphology change calibration factor (along with the scalesus and scalebed coefficients). One thing to note is that what may calibrate well for one area will not calibrate well for another so an average value may be necessary.
Additional Information
- Karambas, T.V. 2003. "Nonlinear wave modeling and sediment transport in the surf and swash zone," Advances in Coastal Modeling, V.C. Lakhan (ed.), Elsevier Oceanography Series, 67, Amsterdam, The Netherlands, 267-298
- Larson, M., Hanson, H., and Kraus, N.C. 2003. "Numerical modeling of beach topography change," Advances in Coastal Modeling, V.C. Lakhan (ed.), Elsevier Oceanography Series, 67, Amsterdam, The Netherlands, 337-365
Chapter 4 of
- Horikawa, K. 1988. (ed.) "Nearshore dynamics and coastal processes. Theory, measurement, and predictive models," University of Tokyo Press, Tokyo, Japan
Related Topics
References
SMS – Surface-water Modeling System | ||
---|---|---|
Modules: | 1D Grid • Cartesian Grid • Curvilinear Grid • GIS • Map • Mesh • Particle • Quadtree • Raster • Scatter • UGrid | |
General Models: | 3D Structure • FVCOM • Generic • PTM | |
Coastal Models: | ADCIRC • BOUSS-2D • CGWAVE • CMS-Flow • CMS-Wave • GenCade • STWAVE • WAM | |
Riverine/Estuarine Models: | AdH • HEC-RAS • HYDRO AS-2D • RMA2 • RMA4 • SRH-2D • TUFLOW • TUFLOW FV | |
Aquaveo • SMS Tutorials • SMS Workflows |