CPP Coordinate System: Difference between revisions

From XMS Wiki
Jump to navigationJump to search
No edit summary
No edit summary
 
(25 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A CPP (Carte Parallelo-Grammatique Projection) system is a local system. The origin of the system must be defined in latitude/longitude decimal degrees.
A CPP (la carte parallelogrammatique projection, also called equirectangular projection or equidistant cylindrical projection) system is a local system. The projection maps meridians to vertical straight lines of constant spacing (for meridional intervals of constant spacing), and circles of latitude to horizontal straight lines of constant spacing (for constant intervals of parallels). The projection is neither equal area nor conformal.  The CPP system has become a standard for global raster datasets, such as Celestia and NASA World Wind, because of the particularly simple relationship between the position of an image pixel on the map and its corresponding geographic location on Earth.
 
The origin of the system must be defined in latitude/longitude decimal degrees.


The conversion from of a point from latitude/longitude to CPP is:
The conversion from of a point from latitude/longitude to CPP is:
<!--:newpoint<sub>x</sub> = R * (point<sub>longitude</sub> - origin<sub>longitude</sub>) *  cos(origin<sub>latitude</sub>)
newpoint<sub>y</sub>  = point<sub>latitude</sub> * R
<math>\text{newpoint}_x = R * \Big( \text{point}_{\text{longitude}}- \text{origin}_{\text{longitude}} \Big) * \cos \Big( \text{origin}_{\text{latitude}} \Big)</math>


<!--:newpoint<sub>x</sub> = R * (point<sub>longitude</sub> - origin<sub>longitude</sub>) *  cos(origin<sub>latitude</sub>)
<math>\ \text{newpoint}_y = \text{point}_{\text{longitude}} * R </math>
:newpoint<sub>y</sub>  = point<sub>latitude</sub> * R-->
-->
<!--:<math>\text{newpoint}_x = R * \Big( \text{point}_{\text{longitude}}- \text{origin}_{\text{longitude}} \Big) * \cos \Big( \text{origin}_{\text{latitude}} \Big)</math>  
:[[Image:cppcoordsys1.jpg]]


:<math>\ \text{newpoint}_y = \text{point}_{\text{longitude}} * R </math>-->
:[[Image:cppcoordsys2.jpg]]
[[Image:cppcoordsys1.gif]]




Line 14: Line 18:


<!--:newpoint<sub>longitude</sub> = origin<sub>longitude</sub> + point<sub>x</sub> / (R *  cos(origin<sub>latitude</sub>))
<!--:newpoint<sub>longitude</sub> = origin<sub>longitude</sub> + point<sub>x</sub> / (R *  cos(origin<sub>latitude</sub>))
:newpoint<sub>latitude</sub> = point<sub>y</sub> / R-->
newpoint<sub>latitude</sub> = point<sub>y</sub> / R
<!--:<math>\text{newpoint}_{\text{longitude}} = \frac{\text{origin}_{\text{longitude}} + \text{point}_x}{R * \cos \big( \text{origin}_{\text{latitude}} \big)}</math>
<math>\text{newpoint}_{\text{longitude}} = \frac{\text{origin}_{\text{longitude}} + \text{point}_x}{R * \cos \big( \text{origin}_{\text{latitude}} \big)}</math>


:<math>\ \text{newpoint}_{\text{latitude}} = \frac{\text{point}_y}{R} </math>-->
<math>\ \text{newpoint}_{\text{latitude}} = \frac{\text{point}_y}{R} </math>
[[Image:cppcoordsys2.gif]]
-->


:<math>\text{newpoint}_{\text{longitude}} = \text{origin}_{\text{longitude}} + \frac{\text{point}_x}{R * \cos \big( \text{origin}_{\text{latitude}} \big)}</math>
<!--:[[Image:cppcoordsys3.jpg]]-->
:[[Image:cppcoordsys4.jpg]]


R = 6378206.4 m. (Clarke 1866 major spheroid  radius)
:<math>R = 6378206.4 m. </math> (Clarke 1866 major spheroid  radius)


==See also==
==See also==
*[[Coordinate Systems]]
*[[Coordinate Systems]]
*[[Projections]]
*[[Projection Dialogs]]
*[https://en.wikipedia.org/wiki/Equirectangular_projection Equirectangular Projection Article on Wikipedia]
{{Projections}}


[[Category:Coordinate Systems]]
[[Category:Coordinate Systems]]
[[Category:Equations]]
[[Category:External Links]]
{{stub}}

Latest revision as of 20:54, 12 April 2019

A CPP (la carte parallelogrammatique projection, also called equirectangular projection or equidistant cylindrical projection) system is a local system. The projection maps meridians to vertical straight lines of constant spacing (for meridional intervals of constant spacing), and circles of latitude to horizontal straight lines of constant spacing (for constant intervals of parallels). The projection is neither equal area nor conformal. The CPP system has become a standard for global raster datasets, such as Celestia and NASA World Wind, because of the particularly simple relationship between the position of an image pixel on the map and its corresponding geographic location on Earth.

The origin of the system must be defined in latitude/longitude decimal degrees.

The conversion from of a point from latitude/longitude to CPP is:

Cppcoordsys1.jpg
Cppcoordsys2.jpg


The conversion of a point from CPP to latitude/longitude is:


Cppcoordsys4.jpg
(Clarke 1866 major spheroid radius)

See also