SMS:ADCIRC: Difference between revisions

From XMS Wiki
Jump to navigationJump to search
No edit summary
(fixed sample problem link)
Line 15: Line 15:
Models Section <br>
Models Section <br>
* ADCIRC
* ADCIRC
Several Sample problems can be found on the ADCIRC model developer's [http://www.adcirc.org/Examples.html webpage]
Several Sample problems can be found on the ADCIRC model developer's [http://adcirc.org/home/documentation/example-problems/ webpage]
}}
}}



Revision as of 15:53, 14 May 2013

ADCIRC
Model Info
Model type Finite element hydrodynamic model for coastal oceans, inlets, rivers and floodplains.
Developer

Rick Luettich
Joannes Westerink
Randall Kolar

Cline Dawson
Web site http://www.adcirc.org
Tutorials

General Section

  • Data Visualization
  • Mesh Editing
  • Observation

Models Section

  • ADCIRC
Several Sample problems can be found on the ADCIRC model developer's webpage

The ADCIRC (Advanced Circulation) model is a finite element hydrodynamic model for coastal oceans, inlets, rivers and floodplains. The initial developers of the code were Rick Luettich (University of North Carolina at Chapel Hill) and Joannes Westerink (University of Notre Dame). Other principal developers include Randall Kolar (University of Oklahoma at Norman) and Cline Dawson (University of Texas at Austin). Various other groups are involved in development and support around the country.

The ADCIRC model is only valid for models in North America.

Graphical Interface

SMS provides a graphical interface that is designed to allow users to visualize the projects they are creating, easily modify project parameters, and view the solutions produced by the ADCIRC model. See ADCIRC Graphical Interface for more information.

The ADCIRC Graphical Interface contains tools to create and edit an ADCIRC simulation. The simulation consists of a geometric definition of the model domain (the mesh) and a set of numerical parameters. The parameters define the boundary conditions and options pertinent to the model.

The interface is accessed by selecting the 2D Mesh Module and setting the current model to ADCIRC. If a mesh has already been created for a ADCIRC simulation or an existing simulation read, the mesh object will exist in the Project Explorer and selecting that object will make the 2D Mesh module active and set the model to ADCIRC. See the Mesh Module documentation for guidance on building and editing meshes as well as visualizing mesh results.

The interface consists of the 2D Mesh Module Menus and tools augmented by the ADCIRC Menu. See ADCIRC Graphical Interface for more information.

Functionality

ADCIRC is a system of computer programs for solving time dependent, free surface circulation and transport problems in two and three dimensions. These programs utilize the finite element method in space allowing the use of highly flexible, unstructured grids. Typical ADCIRC applications have included: (i) modeling tides and wind driven circulation, (ii) analysis of hurricane storm surge and flooding, (iii) dredging feasibility and material disposal studies, (iv) larval transport studies, (v) near shore marine operations.

For more information about the ADCIRC model visit www.adcirc.org.

Using the Model / Practical Notes

  • There is an ADCIRC listserv that may be useful to keep up-to-date about the latest releases of ADCIRC and to post any questions about ADCIRC. It is adcirc@listserv.unc.edu. If you would like to join please email Crystal Fulcher.

Related Topics

External Links