User:Dwood1/WMS:Version History: Difference between revisions

From XMS Wiki
Jump to navigationJump to search
No edit summary
No edit summary
 
(9 intermediate revisions by the same user not shown)
Line 52: Line 52:
! scope="col" width="120" | Date
! scope="col" width="120" | Date
! Changes
! Changes
|- valign="top"
| [[WMS:What's new in WMS version 11.1|11.1]]
|
*2021 Apr - beta
|
#GIS Module
#*Faster/more robust GIS parameter computations directly from shapefiles.
#*Faster shapefile to feature object conversion.
#*Improved display speed of large raster files.
#*Addition of Web-based Google tile map services as Online Maps that can be displayed as background maps.
#*Additional features to online maps to use tile map services and other types of services as online maps.
#*Improvements to display and operations on images and raster files of various types.
#GSSHA
#*View multiple scenario hydrographs in GSSHA solution:
#*Added capability to run calibration on Richard’s Equation parameters in GSSHA.
#Map Data
#*''Extract Features'' tool that allows directly converting raster data to stream and ridge/embankment centerlines.
#*Map flood tool: Add an option to use local shapefiles for Base Flood Elevations and floodplain boundary polygons when web service data are not available.
#Rational Method
#*Better support for entering/computing Rational Method IDF curves.
#Models
#*Fix various issues in GSSHA, HEC-1, HEC-HMS, HEC-RAS, NSS, Rational, and MODRAT models and make improvements/updates to model interfaces.
#*Updated to the latest versions of the HEC-HMS (HMS 4.4.1) and GSSHA (7.13) models.
#*Updated versions of HY-8 and Hydraulic Toolbox used with WMS.
#General
#*Added option to change the directory used to store temporary WMS files.
#Bugfixes
#*Visit the [[WMS:Bugfixes_WMS|WMS bugfix page]] to view the list of bugs fixed.


|- valign="top"
|- valign="top"
Line 100: Line 129:
#*The community edition allows reading and viewing Rational, NSS, SWMM, EPANET, and other models that exceed these limits, but WMS does not allow saving changes to models that exceed the limits.  This edition also allows building storm drain, water distribution, and sanitary sewer models that meet the above criteria as long as the maximum number of pipes is not exceeded.  More information about the features enabled in the community edition of WMS and how to purchase WMS packages can be found on the [http://www.aquaveo.com/software/wms-pricing WMS pricing page].
#*The community edition allows reading and viewing Rational, NSS, SWMM, EPANET, and other models that exceed these limits, but WMS does not allow saving changes to models that exceed the limits.  This edition also allows building storm drain, water distribution, and sanitary sewer models that meet the above criteria as long as the maximum number of pipes is not exceeded.  More information about the features enabled in the community edition of WMS and how to purchase WMS packages can be found on the [http://www.aquaveo.com/software/wms-pricing WMS pricing page].
#EPANET Model Support
#EPANET Model Support
#WMS 10.1 adds support for the EPANET model, a widely used water distribution model.  Read GIS data files and map their attributes to the EPANET model attributes, or read and edit existing EPANET models.
#*WMS 10.1 adds support for the EPANET model, a widely used water distribution model.  Read GIS data files and map their attributes to the EPANET model attributes, or read and edit existing EPANET models.
#Improved EPA-SWMM Model Support
#Improved EPA-SWMM Model Support
#WMS 10.1 fully supports both sanitary sewer options and storm drain options associated with EPA-SWMM models.  Read GIS data files and map their attributes to the EPA-SWMM model attributes, or read and edit existing EPA-SWMM models.
#*WMS 10.1 fully supports both sanitary sewer options and storm drain options associated with EPA-SWMM models.  Read GIS data files and map their attributes to the EPA-SWMM model attributes, or read and edit existing EPA-SWMM models.
#Improved HY12 Model Support
#Improved HY12 Model Support
#HY12 is an Federal Highway Administration (FHWA)-sponsored storm drain and hydrology model developed by Aquaveo.  The Community edition of WMS 10.1 includes a completely free interface to HY12.  There are four new tutorials that describe how to import and use various types of data into WMS to build an HY12 model.
#*HY12 is an Federal Highway Administration (FHWA)-sponsored storm drain and hydrology model developed by Aquaveo.  The Community edition of WMS 10.1 includes a completely free interface to HY12.  There are four new tutorials that describe how to import and use various types of data into WMS to build an HY12 model.
#WMS 10.1 includes a simplified interface to HY12 that makes developing an HY12 model much easier than before.  The spreadsheet-like interface is similar to the EPA-SWMM and EPANET interfaces and much of the data can be transferred between HY12 and EPA-SWMM so data can be shared between these models.
#*WMS 10.1 includes a simplified interface to HY12 that makes developing an HY12 model much easier than before.  The spreadsheet-like interface is similar to the EPA-SWMM and EPANET interfaces and much of the data can be transferred between HY12 and EPA-SWMM so data can be shared between these models.
#In addition, a tool exists that allows editing link/node elevations in an HY12 model using a profile editor.
#*In addition, a tool exists that allows editing link/node elevations in an HY12 model using a profile editor.
#Time Series Data Calculator
#Time Series Data Calculator
#Use the ''Time Series Calculator'' in the Time Series Editor program to perform simple mathematical operations using time series data.
#*Use the ''Time Series Calculator'' in the Time Series Editor program to perform simple mathematical operations using time series data.
#GSSHA Model Improvements
#GSSHA Model Improvements
#Several GSSHA model improvements have been made related to better calibration and renumbering streams.
#*Several GSSHA model improvements have been made related to better calibration and renumbering streams.
#Mine Water Balance Model (MWBM) Wizard
#*Mine Water Balance Model (MWBM) Wizard
#The MWBM wizard steps through the process of editing and modifying a GSSHA model based on changes to the terrain, land use, pumping stations, embankments, and other parameters in a mine model that is tracking sediment output from the mine.
#*The MWBM wizard steps through the process of editing and modifying a GSSHA model based on changes to the terrain, land use, pumping stations, embankments, and other parameters in a mine model that is tracking sediment output from the mine.
#Bug fixes
#Bug fixes
#To view the list of bugs fixed in WMS 10.1, visit the [[WMS:Bugfixes_WMS|WMS bugfix page]].
#*To view the list of bugs fixed in WMS 10.1, visit the [[WMS:Bugfixes_WMS|WMS bugfix page]].


|- valign="top"
|- valign="top"
| [[SMS:What's New in SMS 12.3|12.3]]
| [[WMS:What's new in WMS version 10.0|10.0]]
|
|
*2018 Feb - beta
*2014 Jun - final
*2018 Dec - final
|
|
#General Features
#Model Calibration Updates
#* Updated icons to higher resolution.
#*The newest version of GSSHA supports [http://www.pesthomepage.org/ PEST-style] automated calibration methods. WMS 10.0 has an interface to these automated calibration methods in GSSHA. WMS 10.0 allows you to have multiple calibration points and allows you to calibrate to observations other than outlet flow values such as depths, snow water equivalent, and other parameters. More information about automated calibration in GSSHA using WMS 10.0 is located [[WMS:GSSHA Automated Calibration|here]] and [[WMS:GSSHA Manual Calibration|here]].
#* Selection to echo window.
#Depth Varying Overland Flow Roughness
#* Updates to the ''Virtual Earth Map Locator''.
#*The newest version of GSSHA has a mapping table that supports a depth-varying overland flow roughness exponent.  This parameter is used in addition to the roughness mapping table.  Without the addition of this table, a default exponent of 0.0 is used, which means the roughness does not change with overland flow depth.
#* Default [[SMS:Preferences|''Contour Range'']] options added to the ''[[SMS:Preferences|Preferences]]'' dialog.
#Link/Node-Specific Overbank and Backwater Options
#* Data points on plots can be selected to show the point values.
#*GSSHA previously had two options that could be defined globally. The first option, the overbank flow option (OVERBANK_FLOW), increases the level of connection between the overland flow and the channel in the 1D hydraulic model by allowing water to spill from the channel back onto the overland flow plane. If the second option, the overland backwater option (OVERLAND_BACKWATER), is turned on, flow from the overland flow model to the channel in the 1D hydraulic model is restricted if the elevation of the water in the channel exceeds the overland cell elevation. This option can now be defined at each of the arcs (links) in your GSSHA model in the GSSHA arc properties dialog. If this option is defined for one of the arcs, the global option is turned off.
#Map
#Storm and Tile Drain Interface Tools
#* A transparency can be set for filled polygons (such as materials) in the map ''[[SMS:Display Options|Display Options]]''.
#*WMS 10.0 contains many new GSSHA storm and tile drain interface tools.  A detailed description of all the tools is available [[WMS:Pipe_and_Node_Parameters#Tools_for_Editing_GSSHA_Storm_and_Tile_Drain_Data|here]].
#* Right-clicking on an arc in an [[SMS:Observation Coverage|observation coverage]] now has the option to directly generate an observation plot from that arc.
#New GSSHA Tutorial
#SRH-2D
#*Several of the [[WMS:WMS_Tutorials#Distributed_Hydrologic_Modeling_using_GSSHA|GSSHA tutorials]] have been updated to reflect changes to GSSHA and its interface, especially the storm and tile drain tutorial and the calibration tutorial.
#* Ability to create inflow-outflow link structures that model flow between two separate meshes.
#*Also, a new tutorial has been added to the list of WMS tutorials under the Spatial modeling section.  [[WMS:WMS_Tutorials#Hydrologic_Models|This tutorial]] describes how to convert an HMS model to a GSSHA model using simple, easy-to-follow steps from the WMS interface.
#* Update to internal links to allow for a rating curve inflow condition to these structures.
#Support for HMS 4.0
#* Link to HY-8 for culvert calculations via a table of flow rates—significantly reduces for HY-8 computation time.
#*WMS 10.0 supports HMS 4.0.  This new version of the HMS model is included with the WMS installation.
 
#DSS Grid Parameters
|- valign="top"
#*The capability of computing several gridded DSS parameters and exporting them to a DSS file for use in HMS has been added to the HMS ModClark interface. In addition, several types HMS grids can be computed and exported with your HMS model. A grid can be defined at any resolution and Green Ampt, SMA, and Curve Number parameters can be computed using land use and soil maps. In addition, snowmelt parameters, evapotranspiration parameters, infiltration parameters, and other hydrologic parameters can be interpolated to your grid from scattered data and then exported to your HMS ModClark model.
| [[SMS:What's New in SMS 12.2|12.2]]
#New HMS Tutorial
|
#*A new tutorial titled [[WMS:WMS_Tutorials#Hydrologic_Models|'''Using Online Spatial Data to Create an HEC-HMS Model''']] describes how to use solely online data sources available from the WMS interface to collect all the data required and build an HMS model for any part of the United States.
*2016 Sep - beta
#National Streamflow Statistics (NSS) 6.0 Support
*2018 May - final
#*WMS 10.0 supports [http://water.usgs.gov/software/NSS/ '''NSS version 6.0'''] with the updated database, which contains all the latest regression equations for the United States as of May 2014.
|
#Sanitary Sewer Modeling Options
#Community Version
#*Sanitary sewer modeling tools have been added to the EPA SWMM interface in WMS. The following tools have been added to the WMS interface that allow you to define sanitary sewer models and read existing sanitary sewer models:
#*The [[SMS:Community Version|SMS Community Version]] is an unlicensed version that allows using a basic interface to:
##A sanitary sewer coverage.
#** Open and view files.
##An option to define diurnal curves and assign curves to nodes/manholes.
#** Generate a mesh (limited to one mesh).
##An option to import infiltration and domestic flows from ESRI shapefiles and to export these values to EPA SWMM.
#** Use the SRH-2D interface (limited to one simulation).
##An option to import a peaking factor for the domestic flows and export these values to EPA SWMM
#General Features
##An option to import SWMM 5 models with sanitary sewer options and export these models to ESRI shapefiles
#* Options added to '''Smooth Arc''' tool.
#SWMM 5.1 Support
#* Size functions can be used to redistribute vertices along an arc.
#*WMS 10.0 Supports the most recent version of [http://www.epa.gov/nrmrl/wswrd/wq/models/swmm/ '''SWMM'''], version 5.1.
#Curvilinear Grid
#FEMA Flood Maps
#*SMS can now use multiple curvilinear grids.
#*The capability to read FEMA Flood Maps using web services has been added to WMS 10.0. Options to import both raster flood images and vector floodplain boundary maps are available.
#*Curvilinear grids can now be duplicated.
#Flood Map Legend
#UGrid Module
#*The FEMA flood map legend for FEMA flood images downloaded to WMS 10.0 is shown below:
#*[[SMS:UGrid Module|UGrid]] module added to SMS.
#NOAA Atlas 14 Data
#CMS-Flow
#*Getting a precipitation value has never been easier with the option to get NOAA Atlas 14 data for a delineated watershed in WMS. Options are available to get the mean, upper confidence interval value, and lower value for most watersheds delineated within the United States. The button to get NOAA atlas 14 precipitation values data is available for the commonly used watershed models in WMS, including HMS, HEC-1, and GSSHA. Just select the rainfall hyetograph option for any of these models and a button will appear that allows you to get the precipitation from the web.
#*Structures coverage added.
#NCDC Station Wizard
#*Monitoring stations coverage added.
#*The NCDC Station Wizard allows you to view rainfall gage stations surrounding your watershed, analyze the data associated with these stations, and download the rainfall data. When the data is downloaded, WMS creates creates a rain gage coverage and assigns the rainfall data to gages in this coverage. These gages can then be used in the GSSHA, HMS, or HEC-1 hydrologic models. This exciting tool makes it possible to download historic rainfall data for many areas directly from WMS and then use this historic data in your watershed model.
#[[SMS:HEC-RAS|HEC-RAS]]
#Bug fixes
#* Now uses the simulation process similar to that used in SRH-2D.
#*To view the list of bugs fixed in WMS 10.0, visit the [[WMS:Bugfixes_WMS|WMS bugfix page]].
#* Can be used to export geometry generated in SMS for use in HEC-RAS.
#SRH-2D
#*New sediment materials coverage.
#* Pressure zones with arched ceiling elevations.
#* Weir flow over pressure zones.
#* Internal links to connect internal source and sinks.
#* Internal source/sinks.
#* Option to use energy total head instead of water-surface elevation for culverts.
#Removed Features
#* The ''GIS to Feature Objects Wizard'' no longer allows creating a new coverage during the conversion process. Existing coverages can still be selected.


|- valign="top"
|- valign="top"
| [[SMS:What's New in SMS 12.1|12.1]]
| [[WMS:What's new in WMS version 9.1|9.1]]
|
|
*2015 Nov - beta
*2013 Feb - final
*2017 Jan - final
|
|
#General Features
#Add GIS Data Command
#* An option was added to restore factory defaults in the ''File'' | '''Save Settings''' command.
#*The '''Add GIS Data''' command in the ''Get Data'' toolbar allows a user to read many formats of vector and raster GIS data.  After reading the data, it can be viewed or converted to a format that can be used for hydrologic modeling in WMS.
#* A new tool was added to the dataset toolbox to perform a comparison between datasets on different geometry.  
#Raster Display Options
#* Functionality to load/use cross section and centerline data from HEC-RAS simulations added.
#*If there is raster elevation data read using the '''Add GIS Data''' command or if there is online data that contains raster elevations, there are various options for displaying hill shading on the raster data. A user can also convert any raster elevation data to a DEM.
#* An option to create a summary table to compare 2D Hydrodynamic results with traditional 1D model results at river cross sections.
#GIS Vector Data Conversions
#* Polygons that share a common arc(s) can be merged into a single polygon.
#*GIS Vector Data can be converted to a shapefile.  Once the GIS data is converted to a shapefile, it can be used in any of the hydrologic modeling computations for tasks like computing curve numbers and infiltration coefficients.
#* Data from the Coastal Hazards System can now be imported into SMS on Spatial Data coverages.
#Raster Data Conversions
#* New tool in the Dataset Toolbox allows comparison of datasets from different geometry without interpolation to a common geometry first.
#*Raster data with information about land use or soil type can be converted to a land use or soil type grid by right-clicking on the layer. USGS NLCD and European CORINE Land use data can also be downloaded for anywhere in the United States and Europe using the '''Get Data''' tool. More information about the new data sources available in WMS 9.1 can be viewed [[Import_from_Web|here]].
#* New [[SMS:Workflows_Overview| Workflow Outlines]] are available to simplify learning and remembering the steps for performing modeling processes.
#*WMS DEMs can be exported to several digital elevation file formats, including the following:
#Model Interfaces
#**GeoTiff
#*SMS includes a new simulation based interface for the Coastal Modeling System (CMS) (see [http://www.erdc.usace.army.mil/Media/FactSheets/FactSheetArticleView/tabid/9254/Article/484188/coastal-modeling-system.aspx Fact Sheet] and [http://cirp.usace.army.mil/products/cms.php Product Description]).
#**BIL
#**ERDAS Imaging IMG
#**Surfer ASCII Grid
#**Surfer Binary Grid
#**USGS ASCII DEM
#**XYZ ASCII Grid
#**ArcInfo ASCII Grid
#**DXF 3D Point
#**Float/Grid
#**DTED
#**MapInfo Grid
#**GlobalMapper Grid
#**Windsim GWS
#*All these files as well as many other formats can also be imported using the '''Add GIS Data''' button.
#Vector/Shapefile Data Conversions
#*Vector GIS data that is read into WMS can be converted to a shapefile and used in WMS or saved to one of the many other supported formats.  The supported formats include:
#**DXF Files (*.dxf)
#**Area Shapefiles (*.shp)
#**Line Shapefiles (*.shp)
#**Point Shapefiles (*.shp)
#**Google Earth KMZ Files (*.kmz)
#**MapInfo MIF/MID Files (*.mif)
#**MapInfo TAB/MAP Files (*.map)
#**Simple ASCII Text Files (*.txt)
#**CSV (Comma-separated value) Files (*.csv)
#**[http://en.wikipedia.org/wiki/Scalable_Vector_Graphics SVG Files (*.svg)]
#GIS Module
#GIS Module
#* A new GIS module was introduced in version 12.0 and has been significantly enhanced in SMS 12.1.  All images, rasters, shapefiles and lidar tiles are loaded into this module for common management.
#*All images, raster GIS data, and vector GIS data are now stored in the GIS module. In the GIS module, a user can import, export, and convert GIS data to different formats. A user can also map data in the GIS module to data in WMS that can be used to build the watershed models.
#* Rasters, previously accessed through the Raster module are now economically managed as GIS objects.
#TIN Elevations from LandXML Files
#** Display options include an image representation or a point cloud.
#*WMS 9.1 allows the user to read LandXML files as a TIN.  This command to import LandXML files preserves the points and the triangle connections that were built in the CAD program that was used to generate the LandXML file.
#** Tools for interpolation of elevation data to grids, meshes and scatter sets.
#DGN, DWG, and other CAD File Support
#** Tools for conversion to scatter set, resampling, smoothing, trimming and editing.
#*WMS 9.1 supports most of the latest DGN, DWG, and DXF file formats through the [http://www.opendesign.com/the_oda_platform Teigha library]Currently, WMS 9.1 uses version 3.05.01 of the Teigha library.
#** Tools for extracting land use data for mapping to ADCIRC spatial or nodal attributes.
#Multiple DEMs
#Map Module
#*WMS 9.1 allows the user to read and manage multiple DEMs in the project explorer. Each of these DEMs can have flow directions and accumulations for watershed delineation. A user can clip and modify single DEMs or merge multiple DEMs from different sources into a single DEM. A user can convert raster elevation data in the GIS module to DEMs. These DEMs can be merged and exported to any of the raster elevation formats supported by WMS.
#* New Arc tools
#Improved Web Service (Online Data) Tools
#** Redistribution from a source arc to an adjacent target arc.  This feature is very useful to coordinate vertex placement for patch construction.
#*WMS 9.1 has three tools for obtaining online data: '''The Get Data''' tool, the '''Get Data From Map''' command, and the '''Get Online Maps''' command. All of these tools can be used to obtain various types of raster data: Images, elevation data, land use data, vegetation data, and more.
#** Arc offsetting and selecting tools.
#Get Data
#Spectral Coverage
#*The '''Get Data''' tool and the '''Get Data From Map''' command work in much the same way. The user needs to set the current projection before using either of these tools. The difference is that with the '''Get Data''' tool, the user selects the area where data is desired from the WMS window. With the '''Get Data From Map''' command, the user selects the area from the ''Virtual Earth Map Locator'' window. This ''Virtual Earth'' window pops up after selecting the '''Get Data From Map''' command. In either case, the user goes to the area of interested and WMS will bring up another window that allows the user to select the type of data to be downloaded. With all the raster data sources, specify a resolution of the data to be downloaded and WMS will download the data.
#* A spectral coverage can now be copied by right clicking on the coverage and selecting ''Duplicate''This allows spectral points to be broken into smaller sets or spectra to be modified.
#*Several new data sources have been added to the Get Data tools in WMS, including various sources for high-quality imagery.  Samples of many of the data sources are shown in the new ''Get Data'' dialog.
#Mesh Module
#Get Online Maps
#* Mesh elements can be selected and converted into feature arcs. The arcs have the default attributes of the coverage they are assigned to.
#*The '''Get Online Maps''' command allows a user to define online data sources to be added to the display. This command was introduced in WMS 9.0, and has been improved in WMS 9.1. WMS 9.1 launches a separate process to download the online data when it is downloading so the user no longer needs to wait for the data to download before working. WMS 9.1 also has tools to convert online data to static data and to convert it to various formats that can be used for watershed modeling.
#Quadtree Module
#Texture Mapping on TINs
#* Cartesian grids (both regular and irregular) can be converted to Quadtrees by right clicking on the grid
#*The capability to texture map images to TINs has been added. This capability allows a user to read or download an image using the Get Data tools and then texture map the image on a TIN. This gives the option to create a nice image of the watershed model and to visualize the locations and terrain surrounding hydraulic structures in the watershed. A user can also use the texture mapping capabilities to view flood locations and contours from a HEC-RAS analysis.
#* A Quadtree can be edited to conform to sizes specified on a polygon by polygon basis in a Quadtree Generation coverage by right clicking on the Quadtree and selecting the refine command.
#GSSHA Snowmelt
#* Quadtrees can be edited manually by selecting on or more cells, right clicking and selecting the ''Split Cell(s)'' or ''Merge Cell(s)'' commands.
#*Several options to support the GSSHA snowmelt models have been added to the WMS interface. When running long-term GSSHA simulations, the GSSHA snowmelt parameters can be modified in the easy-to-use WMS interface. WMS 9.1 also has options to define raster HMET files for use in GSSHA long term simulations.
#** The split command subdivides each selected cell into four cells.
#HEC-RAS Water Surface Elevations
#** The merge identifies the three sibling cells for each selected cell.  If those cells have not been subdivided, the four cells are merged into a single cell. A cell at the base level cannot be merged.
#*If there is an existing HEC-RAS model and the user wants to bring it into WMS, there has not previously been a way to read the water surface elevations from the HEC-RAS solution. Now if the user exports the water surface elevations with the GIS file that's exported from HEC-RAS, WMS reads these water elevations.
#* The elevation dataset on Quadtrees can be smoothed by right clicking on the Quadtree object and selection the ''Smooth...'' command.
#SWMM Attributes
#* Datasets on a Quadtree can be interpolated to other geometric objects by right clicking on the Quadtree and selecting ''Interpolate to...''.
#*If the correct attributes have been assigned to arcs in a shapefile, WMS now imports storm drain attributes such as names, shapes, diameters, lengths, and upstream and downstream invert elevations to the SWMM model in WMS. This makes the SWMM modeling easier because the user doesn't have to re-enter the pipe attributes that are already defined in a shapefile.
#* A Quadtree is saved as a *.tel file when a CMS-Flow simulation is exported to native input files.
#Bug fixes
#ADCIRC
#*To view the list of bugs fixed in WMS 9.1, visit the [[WMS:Bugfixes_WMS|WMS bugfix page]].
#* Improved utilization of NLCS raster data for population of nodal/spatial attributes (fort.13 file)
#* Update to the version of "aswip.exe" that is installed with SMS and how SMS calls this utility to convert NWS = 8 to NWS = 19 format.
#* SMS was modified to read/maintain "Generic" nodestrings that are defined on a grid.
#* Attributes of a cyclonic storm stored in PBL Trop or ADCIRC Cyclonic storm models (NWS = 8 and 19) are now converted as far as possible when converting between formats.  
#* When an ADCIRC grid is read in, the range of the coordinates is computed and if it is within geographic limits, the projection of the grid is set to geographic.
#ADH
#* Various minor improvements in the interface to SEDLIB
#CMS-Flow
#* The CMS-Flow development team has produced a new version of the model itself. Implicit mode is now recommended as the normal methodology resulting in much shorter run times.
#* The entire interface is now simulation based. This means that a simulation is explicitly represented in the project explorer with links to the components of the simulation such as a quadtree to represent the geometric domain and a coverage storing the boundary conditions.
#SRH-2D
#* The simulation based interface that was unveiled as part of the interim release 12.0 is now available with full functionality.
#*A new tool to compute an EXIT-H depth or rating curve has been added. The user specifies one or more flow rates, a friction slope and a source of topology. SMS computes either the normal or critical depth for each specified Q based on the cross sectional area of the associated arc.
#* The snap preview functionality was significantly sped up.
#* New version of HY-8 allows reuse of culvert crossings in multiple simulations and projects.
#* Support of 1D structural elements including:
#** Weir flow not represented in the mesh
#** HY-8 culvert crossing – This is a significant improvement over the initial link between SRH-2D and the HY-8 culvert calculation engine.
#*** User can now define the crossings before setting up the SHR-2D simulation allowing the model to use existing HY-8 files
#*** HY-8 files can be reused in multiple simulation or projects.
#** Internal culvert – This structure uses the definition of a simple culvert used by the FST2DH program (previously sponsored by FHWA).  This structure allows for faster calculation of culvert flow than can be supported by the current version of HY-8.
#** Pressure zones – This feature allows the user to define regions that have a ceiling elevation.  SRH-2D includes the pressure forces and flow resistance from the bottom side of the deck in 2D hydrodynamic calculations.
#** Gates – This structure can be used to represent a sluice gate condition.
#** Obstructions – This feature allows general representation of flow blockage around a point (such as a pier) or along a line (such as a bridge deck).
#STWAVE
#* STWAVE nesting functionality is now supported through the spectral coverage option.
#TUFLOW FV
#* New version of the TUFLOW-FV model was incorporated along with an updated version of the tutorial.
#WAM
#* A new function was added to convert WAM output to spectral coverages. This allows them to be used as input for STWAVE or CMS-Wave.


|- valign="top"
|- valign="top"
| [[SMS:What's New in SMS 12.0|12.0]]
| [[WMS:What's new in WMS version 9.0|9.0]]
|
|
*2015 May - beta
*2012 Jan - beta
*2015 Oct - final beta
*2012 Oct - final
|
|
#Model Interfaces
#Updated Interfaces
#*SMS now includes a full custom interface for the [//www.usbr.gov/pmts/sediment/model/srh2d/ Sedimentation and River Hydraulics – Two-Dimensional(SRH-2D)] model. This model was originally developed by the [http://www.usbr.gov/ U.S. Bureau of Reclamation] and is now cosponsored by the [http://www.fhwa.dot.gov/ U.S. Federal Highway Administration].
#*The NSS (National Streamflow Statistics) interface has been updated to use the latest NSS database. The MODRAT interface has also been updated. Renumbering has been improved in the MODRAT interface and several issues have been fixed. Several new features and enhancements have been added to the GSSHA interface. First, the storm and tile drain modeling capability of GSSHA has been improved by adding the capability to add multiple pipes in a "superlink", which represents a network of pipes in GSSHA. The algorithm for determining embankments has also been reworked to make the algorithm more efficient and more accurate. The GSSHA tutorials have also been updated and improved to include the latest enhancements in the GSSHA code. Also, GSSHA itself has been reworked to make the program more stable.
#*[[SMS:Dynamic Model Interface|Dynamic Model Interface]] will eventually replace the [[SMS:Generic Model Graphical Interface|Generic Model Interface]] to allow more flexibility for model developers.
#FHWA HY-12 Storm Drain Modeling
#Modules
#*WMS now includes an interface to FHWA's HY-12 storm drain modeling program. This interface allows you to create a storm drain layout and assign rational method computations, curbs and gutters, access holes, pipes, channels, and other storm drain network features to the storm drain layout. Much of the data can be computed automatically using the interface, and other data values can be entered in the easy-to-use windows. The other storm drain modeling interfaces, including the SWMM and xp-swmm interfaces, have also been upgraded to make your model easier to build and maintain.
#*[[SMS:Quadtree Module|New Quadtree Module]] will be utilized in the future for CMS-Flow or other models that perform computations on a quadtree geometry.
#Online Image (Web Map Service) Capabilities
#Contours
#*One of the most exciting new features in WMS is the Get Online Maps tool in the Get Data Toolbar. This tool allows you to open a web map service as an "online image" and use it as you would any other image in the WMS interface. Since the web can be a little slow, there is an option to convert the online image to a static (locally saved) image that is saved with your WMS project and that displays much faster than the online image.
#* A new command has been added to the ''Data'' menu to populate the contour range from either the visible or selected nodes/vertices. The ''Data'' menu has two new commands:
#Improved Web Service Tools
#** '''Set Contour Min/Max''' – this command sets the contour options based on the current options and the selected nodes/vertices or zoom level.
#*Six new web services have been added to the list of web data that can be downloaded from the WMS Get Data Toolbar. These web services include some that were previously available, such as United States National Elevation Datasets, as well as newly available datasets, such as the CORINE European land cover database, the NLCD US National Land Cover database, and the ASTER Worldwide Elevation Data database. These new datasets are much faster than previously available datasets and include a progress bar so you can view the progress of your data download.
#** '''Contour Range Options''' – This allows the user to control if the '''Set Contour Min/Max''' command applies to dataset specific contour options or the general contour options (for the mesh or scatter modules). It also sets the flags for precision and fill above and below.
#Support of New File Formats
#Performance Enhancement
#*We have added support for almost all the commonly used vector file formats in the new version of WMS. Some vector files, such as DXF, DWG, and ESRI Shapefile format, still read the way they have always read into WMS. But support for "Vector-based images" has been added to WMS that allows you to read any file that can be read using the Global Mapper software in WMS (A license to Global Mapper is not required). For a complete listing of the vector formats supported in WMS, [http://www.globalmapper.com/product/formats_vector.htm visit the Global Mapper web site]. Right-clicking on a vector image allows you to export to one of many formats or convert linear data to feature objects or scattered data (XYZ). The following formats can be exported using the right-click command:
#* Cell selection for large grids.
#**DXF Files (*.dxf)
#* The time required to merge two meshes and the options when performing these types of merged were sped up and improved.
#**Area Shapefiles (*.shp)
#Preferences
#**Line Shapefiles (*.shp)
#* The ''Preferences'' dialog now allows users to specify third-party help using the Dynamic Model Interface Schema.
#**Point Shapefiles (*.shp)
#* The settings option now allows the user to reset the settings to either factory defaults or the users specified defaults.
#**Google Earth KMZ Files (*.kmz)
#Projections
#**MapInfo MIF/MID Files (*.mif)
#* The functionality of the display projection was modified to make it more intuitive.  If the user specifies a projection, it will be used for all data being loaded into the system.  If the display projection is "Local" or "Not projected" and data with a projection is loaded, an inconsistency is created.  At that point, SMS requests that the user specify the desired projection to use for display.
#**MapInfo TAB/MAP Files (*.map)
#Rotate Tool
#**Simple ASCII Text Files (*.txt)
#* The '''Rotate''' tool now rotates around the center of the graphics window rather than using the center of x, y, and z coordinates of the data. This allows users to more easily rotate around specific areas of the model.
#**CSV (Comma-separated value) Files (*.csv)
#Quadtree Module
#**[http://en.wikipedia.org/wiki/Scalable_Vector_Graphics SVG Files (*.svg)]
#* [[SMS:Telescoping Grids|Telescoping grids]] have been expanded into a more versatile Quadtree Module.
#FHWA HY-8 7.3 and Hydraulic Toolbox 3.0 Support
#* The '''Map→Quadtree''' command has been added.
#*The FHWA's HY-8 7.3, which includes many new culvert modeling capabilities, is supported in the new version of WMS. The new version of the FHWA's Hydraulic Toolbox (3.0) is also supported with the new version of WMS. The new tools in HY-8 7.3 include modeling of hydraulic jump profiles, broken back culverts (culverts with a change in slope), and horizontal and adverse slopes in culverts. Documentation showing the capabilities included in the latest version of HY-8 is included on the [[HY8:Limitations|HY-8 wiki]]. The newest version of the hydraulic toolbox includes tools for culvert assessment and for determining a riprap or streambed gradation curve using a digital image.
#GIS Module
#Bug fixes
#* The GIS module has been revised to include all Geographic Information data including:
#*To view the list of bugs fixed in WMS 9.0, visit the [[WMS:Bugfixes_WMS|WMS bugfix page]].
#** Images
#** CAD Data - Better data extent information on layer by layer basis
#** Shapefiles
#** Rasters/DTM/DEM – new display options for Rasters, new interpolation options
#* GIS objects are opened in SMS using the Global Mapper library unless specific functionality for a file type is supported.
#* GIS objects loaded into SMS can support
#** Color data (images)
#** Elevation data (DTM)
#** Raster data (land use)
#** Vector data (features)
#* SMS includes tools to [[GIS Conversion and Editing|convert]] between formats and extract data from the GIS objects.
#Map Module
#* SMS can now force an arc from a coverage into an existing mesh/unstructured grid or TIN. The command creates new nodes/vertices and forces the arc as a breakline. Elevations for the new nodes can be assigned from the arc to force a new feature into the geometry or from the mesh/TIN to only force connectivity.
#* A new clean option was added to look for "near" intersections. If an node is within the specified tolerance of another arc, the node is snapped to the arc.  This can be thought of as the corollary to intersecting two arcs that just barely overlap and deleting the resulting dangling end.
#* SMS now autoselects the scatterset/dataset for interpolation onto a polygon if there is only one scatterset and it only has one dataset.
#* SMS can now select arcs/nodes by attribute type.
#Scatter Module
#* SMS now includes an option to optimize all or part of a TIN triangulation using a smooth contour algorithm.  This algorithm attempts to minimize the variability or jaggedness of contours in the selected region by swapping triangle edges.  This is an addition to the two previous optimization methods that utilized minimum angles (Delaunay) or minimum triangle area variation.
#Distance Tool
#* SMS now computes distances between two selected vertices on a TIN in both 2D and 3D space.  The info options control which values are displayed.
#ADCIRC
#* In ADCIRC when there is a weir boundary condition on two nodestrings, the user can right-click on the nodestrings and now there is a new menu called '''Remove Weir'''.  Selecting this brings up a dialog asking the user if they want to pave over the weir or merge nodestrings which will result in new nodes down the center.
#* There is a new menu item called '''Add Weir''' when right-clicking on a single boundary condition nodestring.  This brings up a dialog asking the user what width they want for the weir.  When '''OK''' is clicked a new weir is created.
#* New option to more efficiently search hurricane storm paths in the [[SMS:NOAA HURDAT|HURDAT storm database]]. When opening the the data base SMS now displays a dialog that allows the user to filter by date range, intensity, location (storm must pass within specified distance of specified point).  The user can then select the desired storm/storms and load them into SMS as hurricane coverages.
#* SMS now supports the ice-field option that is has been added to the ADCIRC model in version 51.
#CMS-Flow/CMS-Wave
#*The interfaces to CMS Flow and CMS Wave are not included in SMS 12.0. These interfaces, along with an updated version of the CMS numerical models, will be available in SMS 12.1. Current CMS users should continue to use SMS 11.2.
#GenCade
#* A new option to support Adaptive Time Stepping was added to the interface.
#* A new option to support Tidal Current was added to the interface.
#* Issues related to setup when generating a GenCade model were resolved.
#* Support for an enhanced Inlet Reservoir Model was added.
#* An SBAS Connection was added to the interface.
#* Support for spatially variable parameters was added to the interface.
#Generic Model Interface/2dm files
#*A preference has been added to allow the user to specify the precision used when writing a 2dm geometry file.
#*Since the addition of support for multiple meshes in SMS 11.2, the interface now allows multiple generic model interface templates to be loaded at the same time. An option was also added to allow the user to remove/delete a template that is loaded and is no longer needed.  This command is in the ''Edit'' menu in the Mesh module.
#*When duplicating a coverage of type Generic Model Interface, all attributes of arcs, nodes and polygons are now preserved in the duplicate.
#SRH-2D
#* The [[SMS:SRH-2D|SRH-2D]] interface has been modified to use a simulation based modeling approach rather than the traditional mesh/grid based approach. This allows the user to create a mesh/grid without associating it with a specific model.
#** A simulation is then created near the bottom of the project explorer by right-clicking and selection the ''New Simulation'' command and selecting the appropriate type.
#** Components of the simulation including the geometry, boundary conditions, material zones, monitor lines and points, etc are associated with the simulation by linking the geometry or coverages to the simulation. Linking can be accomplished by right-clicking or drag/drop. 
#** Simulation attributes are specified by right-clicking on the simulation and selecting the appropriate command(s).
#** Simulations can be duplicated and edited to represent multiple scenarios in a single SMS project.
#STWAVE
#* STWAVE now runs all spectra as time values.
#** This means that the solution is loaded as a single dataset with time steps for each spectra.
#** Each input spectra is associated with a date/time.
#** The user can control the reference date for a simulation.
#* STWAVE now supports ice datasets.
#* Spectral coverages have been added to store the spectral data used to represent wave states.
#** Spectra in a spectral coverage are full plane spectra with source specified frequency and directional parameters.
#** Spectra in a spectral coverage can be globally oriented (North = 0) or locally oriented depending on the source.
#* New boundary condition specification
#** User specifies the resolution of half or full plane spectra to be generated for an STWAVE simulation.
#** Boundary condition can be specified as a spectral coverage with a single spectral site to match historic operation.
#** Boundary condition can be specified as a spectral coverage with multiple spectral sites to allow for spatially varied boundary similar to previous nested simulations.
#** Boundary condition can be specified as a parent/child relationship.
#TUFLOW
#* User can now right-click on the TUFLOW root tree item to remove all simulations.


|- valign="top"
|- valign="top"
| [[SMS:What's New in SMS 11.2|11.2]]
| [[WMS:What's new in WMS version 8.4|8.4]]
|
|
*2014 Jun - beta
*2011 Feb - final
*2016 Mar - final
|
|
#Contour Options
#What's new in WMS 8.4
#* The default values for contour options in a dataset will be that of the module.
#*Updated to be compatible with the latest version of GSSHA. New tutorials are available for use with WMS.
#* The user can now select multiple datasets and assign dataset specific contour options to all selected at the same time.
#*Integration with FHWA's HY-8 and Hydraulic Toolbox software.
#* User defined color palette files can now be saved as part of the initialization of SMS.
#*HY-8 modeling wizard: Allows you to design or analyze culverts using the linkage between WMS, HY-8, and the Hydraulic Toolbox.
#Dataset Toolbox
#*Integration of the Time Series Editor with WMS. This tool allows you to find and download data from the internet and to modify existing time series data.
#* A ''Merge Datasets'' option is now available in the [[SMS:Dataset Toolbox|Dataset Toolbox]]. This allows two datasets that do not overlap in time to be concatenated together.
#*New method of computing Flow Directions/Accumulations for basin delineation using TauDEM, allowing for multiprocessor computation of Flow Directions and accumulations.
#DGN CAD Files
#*Full compatibility with 64-bit computers, allowing for faster processing and the ability to process larger datasets than ever before.
#* SMS will now import ".dgn" CAD files.
#Bug fixes
#Dynamic Model Interface
#*DEM contours to feature objects crash in WMS 8.3: 2180
#* We are excited to present a more flexible and powerful alternative to the generic model interface that has been supported by SMS for several years. This methodology allows a model developer to define all the attributes of an interface for a specific model in an XML file. SMS will read this file when launched, and then interact with the model.  This schema is defined in [[SMS:Dynamic_Model_Interface_Schema|Dynamic Model Interface Schema]]. The dynamic model interface includes:
#*Save GSSHA Group Dialog: 2183
#** Model specific menu commands.
#*Multi-Select index map grid cells: 2143
#** Model specific parameters.
#*converting dem contours to feature objects: 2175
#** Model specific boundary conditions.
#*Issues with GSSHA Automated Calibration: 2151
#** Model specific file formats (for both reading and writing).
#*Error reading GSSHA Stochastic Simulation results: 2147
#** Model specific execution procedures including as many different pre-run utilities or execution steps as are required by the model.
#*WMS crashes when right clicking on a TIN Tree Item for a TIN that's been deleted: 2141
#Help
#*Error building pyramids: 2131
#* SMS now supports help using either the online help document (wiki) or a local help file.  The user selects which method is active in the preferences dialog.
#*DEM File won't read in: 2084
#Interface Components
#*Error message when trying to open an image: "The application has failed to start because gmp-vc90-mt.dll was not found": 2075
#* '''Projection''' commands have been moved to the ''Display'' menu.
#*Zoom tool not working in Edit DEM Elevations plot window: 2071
#* A '''Reproject All''' command has been added in the ''Display'' menu.
#*The "Select Shapes Tool" in the GIS module should be an active tool but it is inactive.: 2065
#* '''Help''' buttons in dialogues will open the corresponding page in the XMSWiki.
#*Changes to GSSHA .cmt file requested by Chuck: 277
#LIDAR File Support
#*Allow users to set the GSSHA NUM_INTERP value
#* SMS can now recognizes a [[Lidar Support|LIDAR file]] when a user asks the system to read such a file.  The user can choose the import methodology to load selected layers from the file as either a scatter set or a raster.  SMS also loads an image of the data in the specified format.
#*Sediment interface enhancements: GSSHA
#MIKE 21 (*.mesh) File Support
#*Error in GSSHA Calibration: 2156
#* MIKE 21 (*.mesh) files can now be loaded into SMS. See the article [[SMS:MIKE 21 *.mesh|MIKE 21 *.mesh]].
#*GSSHA calibration output files: 2153
#Saving Color Palettes
#*Allow editing polygon-selected index map ID's in the properties window: 2060
#* Color palettes will now be saved when doing ''File'' | '''Save Settings'''.  When SMS is loaded, any saved palettes will automatically be loaded as defaults.
#*Hydrologic modeling wizard Define project boundary: 2288
#NOAA HURDAT File Support
#*WMS does not read observed data file: 2248
#* SMS will now load storms for the standard [[SMS:NOAA HURDAT|NOAA HURDAT format]].  The file will need to have a  *.hurdat2 extension to be recognized by SMS.
#*Check while reading parameter and calibration file in GSSHA automated calibration: 2249
#Project Explorer
#*Add GSSHA Calibration Parameters in WMS: 2247
#* Right-clicking in the project explorer now has commands to '''Expand All''' and '''Collapse All'''.
#*flow vectors don't read in: 2244
#Vector Display Options
#*Save File button not working in Coverage Overlay dialog: 2239
#* New display option feature for showing vector arrows at a constant elevation. See [[SMS:Vector Display Options|Vector Display Options]] for more information.
#*Crash when deleting GSSHA model: 2236
#* New display option for vector arrows to follow flow path (vectors curve).  This is done by selecting "Arrows follow flow path" under the ''Vectors'' tab in the ''Display Options'' dialog.
#*Report the name of the contaminant when reading the contaminant transport solution: 2235
<blockquote> '''''Warning: this can be slow if displaying lots of vectors.''''' </blockquote>
#*Add option to select whether to export contaminant mass and concentration to GSSHA output control: 2234
#Spectral Coverage
#*WMS not writing all lakes to file: 2217
#* Spectral coverages are now used to store all spectral data by location and time. These coverages are then used as spectral input for CMS-Wave and STWAVE, and are also used to view spectral output generated by the models in observation and nesting files.
#*Simple dam Break not finding Cross Section: 2215
#Annotations
#*Tutorial change request: 2184
#* The user can now assign a time range (beginning date/time to ending date/time) for the objects in an annotation layer to appear. This allows annotations to appear/disappear during an animation to highlight specific features when they are significant.
#*Display options: 2366
#Curvilinear Grid
#*problems numbering Branch: 2332
#* New tool to split and merge row/column of a curvilinear grid.  See the [[SMS:Curvilinear Grid Tools|Curvilinear Grid Tools]] section for more information.
#*Run GSSHA model button in the Hydrologic modeling wizard not working: 2321
#* Ability to merge two curvilinear grids.  See the article [[SMS:Curvilinear Grid Module|Curvilinear Grid Module]] for more information
#*Contour Options button not working: 2311
#Cartesian Grid
#*Distinguish Data/Model/Solution in GSSHA project explorer. 1) Use a different color scheme, 2) Separate the sections out, and 3) Put a symbol M for models as we have S for solutions
#* When creating a grid the grid name is defaulted to the name of the coverage used for generationUser is given an opportunity to specify the name.
#*If groundwater head and aquifer bottom is available in the model, display the following in the Smooth stream arcs dialog and allow user to edit all of these
#Rasters
#*Add the new Tc method to MODRAT
#* SMS 11.2 now supports NOAA Nautical Charts. They can be read in using the "generic vector/raster" option.  The raster data from the chart is loaded.
#*In Hydrologic Modeling wizard, the coordinates for project boundary are not defaulted properly. Dr Nelson thinks it is good idea to default them to 0
#Map Modules
#*In the same dialog of the modeling wizard, if you change the project coordinates, it looks like WMS tries to transform the coordinates in the project bound coordinates list also causing WMS to crash
#* When creating a new coverage, the default name is now set based on the coverage type.
#*While saving GSSHA project, the .cmt file had a soil type index map assigned to several processes even though those processes were not turned onThe processes that were not turned on include evapotranspiration, soil erosion, and possibly others. GSSHA r
#* When assigning polygon attributes, internal arcs are now displayed similar to internal feature points.  These are incorporated into the paving and scalar paving processes.
#*In GSSHA Job Control/Storm-tile drain Edit parameter  button, change the text to "Allow GSSHA to redistribute Superlink Vertices"
#* New arc redistribution option was added that attempts to match the spacing of vertices on one arc (the target) to the spacing of vertices on another arc (the source).  This can be useful when trying to keep vertices on opposite sides of a rectangular feature (like a channel) aligned to prevent skew.
#*Super link/ Super Junction numbering is still not working. If you create the superlinks and turn the Storm/Tile Drain option on Job control, the numbering is not correct. Turning the Storm/Tile Drain option on Job control and then creating the arcs seemed
#* A new command to allow the creation of offset arcs was added to the arc right-click menu.
#*In Job Control/Edit parameters for storm/tile drains, put an option to select a method that specifies how water gets into the drains. The default option should be Cook Method (need to make sure if the name is correct) and next option should be Drain Mod M
#* A new command to smooth arcs was added to the arc right-click menu.
#*Be able to specify a depression mask for running cleandam so you don’t change areas for specified zones
#Mesh Modules
#*Change the user interface to turn this option on, specify the XY boundary condition files, and specify the larger GSSHA model so the mask can be written to this location
#* SMS 11.2 allows for use of multiple meshes.
#*Change the user interface to turn this option on for the larger model and to specify the small GSSHA model so the mask can be used in running the simulation.  
#* When creating a mesh the mesh name is defaulted to the name of the coverage used for generation.  User is given an opportunity to specify the mesh name.
#*Read and write the project file cards and data files required to implement this option
#* Mesh node selection has been refactored to speed up the process of selecting a large number of nodes (using a polygon, rectangle, selection inversion, ...)
#*Read and write DEMs as GeoTIFF files
#ADCIRC
#*Create a display option to display the wetland parameters from the GSSHA polygon attributes dialog if this display option is selected
#* There is now support for time varying bathymetry in ADCIRC.
#*WMS cannot load images after converting DEM to TIN: 2629
#* Users can now do a spatially average interpolate from a raster/DEM to an ADCIRC mesh.
#*Severe WMS/Global Mapper bug when converting DEM to TIN: 2627
#* There is now support for parallel ADCIRC in windows.  The user can specify the number of processors and SMS will launch the model in parallel mode.
#*Modrat Wrapper not finishing: 2624
#* Added support for the time varying bathymetry option that will be released in a future version of ADCIRC.
#*Joining SSURGO data bug: 2623
#* SMS will now import sparse output files created by ADCIRC.
#*When loading the hydrograph solution to HEC-1 WMS Gives an error: 2597
#ADH
#*WMS crashes when converting DEM to TIN after editing TOPAZ generated streams: 2578
#* Added ability to define boundary conditions to arcs in a coverage as part of a conceptual model.
#*WMS crashes when reversing directions of a stream network: 2577
#* Added a new command to read in all components of an AdH solution.
#*The Cross Section Attributes dialog gives bogus help strings: 2566
#* Added support for the PC LVL 1 card.
#*Click on GSSHA Smooth Stream Dialog causes a crash: 2565
#* Added support to add weirs to a simulation by selecting nodestrings defined on the upstream and downstream faces.
#*Add Autocheck for updates to WMS interface
#* The CSTORM-MS coupler has been updated to now include AdH meshes in addition to ADCIRC. This is in preparation for linking to AdH simulations for sediment transport in the CSTORM-MS.
#*Write KMZ file animations as Super-overlays
#BOUSS2D
#*Fixed several MODRAT bugs
#* SMS now uses a simulation based approach to manage BOUSS2D model runs rather than grid based.  This means:
#*WMS crashing when loading GIS data: 2436
#** Simulations for BOUSS2D now appear near the bottom of the Project Explorer window and are created independently from the grid.
#*Build Polygons Crash: 2400
#** Wave conditions are now assigned to a feature point in a BOUSS2D boundary condition coverage.
#*WMS 8.3 unable to Connect to Sever when selecting from web service: 2389
#** Damping layers are specified using arcs in a BOUSS2D damping coverage rather than on nodestrings in the grid.  This eliminates the loss of resolution of a damping layer specification when it is read in.
#** Simulation components including the grid, wave conditions, damping layers, etc are "linked" to a simulation by right-clicking or dragging/dropping into the simulation.
#** Model parameters are specified for the simulation rather than on the grid. The same grid (or other component) can be used in multiple simulation.
#** Simulations can be duplicated and modified to evaluate multiple scenarios.
#* Added support for "Force" probes/sensors.
#CGWAVE
#* SMS now supports an option to autocompute the floating dock coefficient.
#CMS-Flow
#* The cards, values, and comments are now displayed in color in the ''CMS-Flow Advanced'' tab
#* Added projection cards
#* New wave tab in the model control dialog.
#* The Sediment tab in the Model control dialog has been revised to match new model capabilities.
#CMS-Wave
#* The model control dialog was revised for clarity.
#* All input spectra is now handled in a spectral coverage. This allows the user to utilize multiple observed spectra to drive the model in the same manner that a nested simulation has been used in the past. The time stamps assigned to the spectral data are matched up (or interpolated to match) with the times specified for each case. In order to correctly assign spectral data for each case, SMS now requires CMS-Wave simulations to have a reference time.
#SRH-2D
#* There is now a custom interface for the [[SMS:SRH-2D|SRH-2D]] model developed by the United States Bureau of Reclamation (http://www.usbr.gov/pmts/sediment/model/srh2d/index.html).  This model is a finite volume engine that is very stable in wetting/drying conditions.  It has been tested extensively by various agencies, academic and commercial users.
#STWAVE
#* The model control now uses a spectral coverage to specify the cases/wave states that will be included in a simulation.  This allows a user to utilize multiple observed spectra to drive the model in the same manner that a nested simulation has been used in the past. The time stamps assigned to the spectral data are matched up (or interpolated to match) with the times specified for each case. In order to correctly assign spectral data for each case, SMS now requires STWAVE simulations to have a reference time.
#* Added support for the time varying bathymetry option that will be released in the next version of STWAVE.
#TUFLOW
#* Geometry components can use grid extents coverages in addition to grids.  This allows geometry generation by the model during run.
#* Improvement to the 1D&ndash;2D water level lines.  SMS now allows the user to specify the water level lines vertical offset.
 
|- valign="top"
| [[SMS:What's New in SMS 11.1|11.1]]
|
*2012 Oct - beta
*2014 Oct - final
|
#Dynamic Images
#*SMS can now link to dynamic image sources on the web so that the background image is updated as user pans/zooms around the domain.  These images can be converted to static images for speed or if internet access may be lost.
#New Online Image Sources
#*Recently, the terraserver web service that had been available in SMS was discontinued.  SMS now accesses a number of new web sources for image and/or elevation data using the previous web source tools.
#Project on the fly
#*All data in the SMS instance is now projected to a user specified projection for display.  This makes working with data in various projections much easier and less prone to round-off or conversion errors.
#Dataset Toolbox
#*Angle convention conversion for scalar datasets. For more information, see [[SMS:Dataset Toolbox|Dataset Toolbox]].
#Open as... command
#*General data formats such as raster, vector and image files are not always supported as native in SMS.  This new command allows SMS to use the Global Mapper library to convert the data in these files to be read in to SMS.
#Import Wizard column association
#*The import wizard can now associate Northing/Easting headers with Y/X. 
#Annotations
#*In addition to previous annotation capabilities, users can setup annotation layers so they are only visible during user specified time intervals.  This would apply to film loops and stepping through time steps.  See [[Annotations]] for more information.
#MIKE 21 (*.mesh) File Support
#* MIKE 21 (*.mesh) files can now be loaded into SMS 11.1 and later. See the article [[SMS:MIKE 21 *.mesh|MIKE 21 *.mesh]].
#Convert GIS data to Generic model coverage
#*Users can now bring in GIS data (shape file or mif/mid) and convert this to generic model node or arc attributes. For more information, see [[SMS:GIS to Feature Objects Wizard|GIS to Feature Objects Wizard]].
#* Read in a boundary condition file into the GIS module. For more information, see [[SMS:PTM Boundary Condition File|PTM Boundary Condition File]].
#Map Module
#*Select all arcs connected sequentially to define a polygon.  Can be used to detect poor connectivity in a conceptual model. For more information, see [[SMS:Arcs|Select Connected Arcs]].
#*Split arcs based on user specified criterion. For more information, see [[SMS:Arcs|Split Feature Arcs Utility]].
#*Convert Map feature arc and point attributes  (Generic 2D mesh coverage)  to mesh nodestring and node attributes. For more information, see [[SMS:Generic Mesh Coverage|Generic Mesh Coverage]].
#*The Select/Delete Data function (Feature Objects menu) now gives the user the ability to set how points that lie on the selection polygon will be treated. For more information, see [[SMS:Select/Delete Data...|Select/Delete Data...]].
#*Map data can be imported/exported in MIF/MID format. For more information, see [[SMS:MapInfo MID/MIF|MapInfo MID/MIF]].
#*Export map data in shape format. For more information, see [[SMS:Shapefiles#Export_Map_Data_in_Shape_Format|Export Map Data in Shape Format]].
#*Map files have been optimized to load faster.
#*Converting a area property coverage to a 2D grid has been optimized to convert faster.
#Mesh Module
#*Nodestrings now contain an id. For more information, see [[SMS:2D Mesh Nodestrings Menu|2D Mesh Nodestrings Menu]].
#*A subset of the mesh can be selected and edited on its own. For more information, see [[SMS:Editing 2D Meshes|Editing 2D Meshes]].
#*Meshes can be imported/exported in MIF/MID format. For more information, see [[SMS:MapInfo MID/MIF|MapInfo MID/MIF]].
#*An option now exists for mesh to scatter conversions where only selected mesh nodes are converted.
#*Automatic zoom was removed when generating a mesh from a map coverage.
#*Reduce nodal connections. For more information, see [[SMS:Reduce Nodal Connectivity|Reduce Nodal Connectivity]].
#*Global mesh renumbering done using the Cuthill-Mckee renumbering scheme replaces nodestring based renumbering.
#*Mesh quality scatter set creation. For more information, see [[SMS:2D Mesh Module Menus|2D Mesh Module Menus]].
#*ARR plot creation. For more information, see [[SMS:ARR Mesh Quality Assessment Plot|ARR Mesh Quality Assessment Plot]].
#Particle Module
#*[[SMS:Extract Particle Subset|Extract particle subset]] &ndash; Export a portion of the times and/or particles to a new file to reduce file sizes of particle solutions.
#Raster
#*New raster set tree item folder in the project explorer. For more information, see [[SMS:Raster Module|Raster Module]].
#*New "Options" dialog in the raster set project explorer.  This is used specify if raster values are/aren't elevations. For more information, see [[SMS:Raster Functionalities|Raster Functionalities]].
#*Ability to convert part of a raster to a scatter set (TIN).
#Scatter Module
#*Ability to autogenerate TIN breaklines following elevation values. For more information, see [[SMS:Generate Contour Breaklines|Generate Contour Breaklines]].
#*New option to use Laplacian interpolation when interpolated to a Cartesian Grid. For more information, see [[SMS:Laplacian Interpolation|Laplacian Interpolation]].
#*Merging scatter sets will now show a report of the number of vertices, triangles, breaklines before and after the merge. For more information, see [[SMS:Scatter Menu|Scatter Menu]].
#*New scatter filter using VTK Decimate Pro algorithm. For more information, see [[SMS:Scatter Data Menu#Scatter Commands|Scatter Filter]].
#Cartesian Grid Module
#*We now have a floating projection option. For more information, see [[SMS:Cartesian Grid Coordinates|Cartesian Grid Coordinates]].
#AdH
#*Support for version sediment and constituent transport.
#*Preservation of "unsupported" or "advanced" cards in an "Advanced" tab in model control
#*Support for weir structures.
#*Support for PC LVL card (output control).
#*New "Sediment Library Control..." dialog.
#ADCIRC
#*Support for version 50.0.  New distribution of the model.
#*Support for running ADCIRC in parallel (PADCIRC) on windows environment.
#*Support for the new NWS 19 option
#CMS-FLOW
#*Support for version 4.5 of the CMS.  This includes both CMS-Flow and CMS-Wave in a single executable.
#*Complete overhaul of the CMS-Flow model parameters.
#*New parameters to the "Sediment" tab. For more information, see [[SMS:CMS-Flow Model Control 11.2|CMS-Flow Model Control]].
#**Calculate morphology change during ramp period
#**Avalanching
#**Made the D50 Dataset optional
#**Added a new dataset called Sediment Standard Deviation (mm)
#*Changes to the wave model control tab
#*Added new Harmonic WSE-forcing boundary condition. This is located in the CMS-Flow Model Control options under "Tidal" tab. For more information, see [[SMS:CMS-Flow Model Control 11.2|CMS-Flow Model Control]].
#*Added Longitude dataset.  You will see this option in the CMS-Flow Model Control options under "Flow" tab. For more information, see [[SMS:CMS-Flow Model Control 11.2|CMS-Flow Model Control]].
#*Added 29 new Tidal Constituents bringing the total to 37. For more information, see [[SMS:CMS-Flow Model Control 11.2|CMS-Flow Model Control]].
#*Added Grid modification flag. For more information, see [[SMS:CMS-Flow Grid Modification Flag|CMS-Flow Grid Modification Flag]].
#*Added ability to read netCDF files for visualization.
#*Added ability to read fleet wind data. For more information, see [[SMS:Fleet Wind Files|Fleet Wind Files]].
#*New save point coverage and file support. For more information, see [[SMS:CMS-Flow/Save Points|CMS-Flow/Save Points]].
#*Ability to extract levee/structure height from an unstructured (ADCIRC) grid.
#CMS-Wave
#*Support for updated version
#*We now write the *.std file according to the new format.
#*Users can associate times/dates with the simulation.
#*We now support full plane simulations.
#*Ability to create input spectral locations in spectral coverage. For more information, see [[SMS:CMS-Wave Spectral Coverage|CMS-Wave Spectral Coverage]].
#*Support of the new permeable structures.
#*Support spatially varied wind input fields.
#*Support for 8 (yymmddhh) or 12 (yyhhddhhmmss) date fields for temporally changing spectra.
#GenCade Model Interface
#*[[SMS:GenCade|GenCade]] is the newest version of USACE-ERDC coastal morphology model.  It combines the capabilities of previous models GENESIS and Cascade (the source of the model name).
#* The GenCade interface is managed in the [[SMS:1D Grid Module|1D Grid Module]] in the Surface Water Modeling System.
#Generic Model Interface
#*Converter utility provided to model developers to facilitate migration from previous template to SMS 11 template.
#*Ability to only show material options for active material group.
#PTM
#*You can now read in PTM trap files. For more information, see [[SMS:PTM Trap File|PTM Trap File]].
#*Ability to use an ADCIRC ascii fort.45 files for hydrodynamics.
#*Improved smoothing of display of 3D solution of fence diagrams.
#*Support to read in BC file.
#*Improved interface with CMS-Flow.
#STWAVE
#*You can now run stwave in parallel if you have multiple processors. For more information, see [[SMS:STWAVE|STWAVE]].
#TUFLOW
#*Can specify which TUFLOW executable (double or single precision as well as 32 and 64 bit) to use for each simulation.
#*Improved model check for boundary conditions for specified event.
#*Add ability to specify a clip region.
#*Convert GIS rainfall data to TUFLOW boundary conditions
#*Provide option for GIS check/outputs to be shapefiles
#*Support mass balance corrector toggle
#*Support new Source over Area commands
#*Support storage reduction feature
#*Support variable z shape restore/repeat
#*Rearrange grid options dialog
#*Improvements to multiple file import dialog (open TCF file)
#*Support for customary units option
#CSHORE
#*We now can interface with CSHORE.
#CStorm
#*Exporting ADCIRC/STWAVE & ESMF
#*We now write the STWAVE and ADCIRC files into a single directory along with the ESMF mapping information.
#*Allow users to specify file links instead of data ojects for ice and currents.
#Curvilinear (Orthogonal) Grid Generation
#*Users can specify in the simulation's model control how many layers there are for their curvilinear grids.
#*Users can now use a masking coverage to create more precise curvilinear grids. 
#*New feature for relaxing curvilinear grids using predictor/corrector algorithm.
#*User can now display 3D solutions mapped onto fence diagrams cut through the domain.
#*Support for the LTFATE/CH3D model parameters and file formats.
#**Curvilinear Grid LTFATE supports Tidal and Inflow boundary conditions.
#**Added support for Sediment river boundary conditions.
#**Added support for wind.inp file.
#**Support for SEDZL-J sediment transport parameters.
#*Support for the EFDC model parameters and file formats
#VTK Dataset Interpolation
#*Can interpolate from a VTK dataset to mesh2d, cgrid, scatter, vtk mesh or curvilinear geometric object. For more information, see [[SMS:Interpolation VTK|Interpolation (VTK)]].


|- valign="top"
|- valign="top"
| [[SMS:What's New in SMS 11.0|11.0]]
| [[WMS:What's new in WMS version 8.3|8.3]]
|
|
*2011 Dec - beta
*2010 Jan - final
*2012 Nov - final
|
|
#New Module &ndash; Raster Module
#Export rainfall datasets to KMZ (Google Earth) animation files
#*You can now work with raster data (DEM) in SMS without needing to convert the data into a scatterset (TIN). Raster formats are more space efficient and quicker to draw than TIN based formats with the same number of points. This allows you to work with larger DEMs than previously possible within SMS.
#*Using WMS 8.3 you are able to select the solution dataset, the scattered data dataset, and the rainfall dataset and export all three to a KMZ file. In the film loop dialog, you can specify the display elevation associated with your rainfall dataset, and view rainfall intensity at the same time you are viewing its effects in the overland plane and the river network.
#*Rasters can be used to interpolate elevations to a scatter, mesh, or grid. You can create observation profile plots of raster data to see cross-section views of raster data.
#Export index map cells to Google Earth as vector polygons
#Planetary Boundary Layer (PBL)
#*With WMS 8.3 you get a variety of visualizing options. For example, the different index maps that can be created in WMS can now be exported as .kmz files that can be displayed in Google Earth.
#*The PBL model is used to compute wind fields from tropical storms and hurricanes. The PBL engine is developed and maintained by Oceanweather Inc., experts in wind forecasting and hind casting. The PBL model takes an input storm track and outputs wind fields that can be used to force an ADCIRC model. Currently, distribution of the model itself is controlled by OWI.  Negotiations to use the model, or get output files from the model, which can then be used in SMS as part of CSTORM or ADCIRC model runs, must go through OWI.
#Import GSSHA index map files
#Adaptive Hydraulics (AdH)
#*WMS 8.3 allows you to import any index map file, such as Land Use, Soil Type, Combined Index Map, etc. from one GSSHA project to another GSSHA project with the same grid.
#*The 2D shallow water component of the ADaptive Hydraulics Modeling system (AdH) now has an interface within SMS. AdH was developed by the Coastal and Hydraulics Laboratory, ERDC, USACE ([http://www.chl.erdc.usace.army.mil www.chl.erdc.usace.army.mil]). AdH solves the 2D shallow water equations, features an adaptive mesh solution to dynamically alter the resolution of the mesh based upon where it is needed, supports wetting and drying, boat effects, and wind effects. See the AdH website for more information on AdH (https://adh.usace.army.mil/).
#[http://gsshawiki.com Support of Contaminant Transport and NSM modeling in GSSHA]
#*Note: The sediment and AD transport portions of AdH are not currently supported in the SMS interface.
#*WMS 8.3 supports constituent transport modeling, which can be simulated as simple first order reactants or with the full nutrient cycle using NSM. You can input a constituent concentration at any point in your watershed (point and/or non point source) or on a stream and then GSSHA outputs maps of mass and concentrations at each point in your watershed and in your stream network.  
#WAM
#*NSM can be coupled with any hydrologic and hydrodynamic model transport component; this means that NSM deals with transforming processes of water quality constituents in the overland plane and receiving water bodies. Tutorials for each of these capabilities are available on [http://gsshawiki.com gsshawiki.com].
#*The global ocean WAve prediction Model called WAM is a third generation wave model. WAM predicts directional spectra as well as wave properties such as significant wave height, mean wave direction and frequency, swell wave height and mean direction, and wind stress fields corrected by including the wave induced stress and the drag coeffieient at each grid point at chosen output times. (http://chl.erdc.usace.army.mil/chl.aspx?p=s&a=software;8)
#Ability to create mass and concentration plots  for NSM constituents and for simple first order constituents
#*The WAM interface in SMS supports building WAM grids, creating WAM simulations, nesting WAM grids, post-processing support (contours and spectra), and generating spectra for STWAVE input (requires the STWAVE interface).
#*Not only can constituents be visualized in the overland flow plane at any cell in your watershed, but specific plots of constituent mass and concentrations can be generated in the outlet of your watershed using WMS 8.3. This works both for simple first order reactants and for NSM constituents such as nitrogen, phosphorus and carbon species.
#Bouss2D Runup/Overtopping
#Support of Overland flow boundary conditions in GSSHA
#*It is now possible to run Bouss2D in 1D mode to simulate run-up and overtopping. The runup/overtopping interface supports the ability to extract transects, position gages, specify roughness zones (Chezy or Manning), and define multiple wave cases. Post-processing includes 2D profile plots along transects, time-series plots of gage output, generated summary statistics such as height of highest 1/10, 1/50 of waves, and the point of furthest encroachment on each transect.
#*Using WMS 8.3 you can model coastal storm surges or areas around a standing water body using overland flow boundary conditions, which can be defined as constant slope, constant stage (water surface elevation), or variable stage (water surface elevation). GSSHA will take a map of the boundary conditions and apply that condition at the beginning of each time step.
#TUFLOW Advection/Diffusion Module
#Improvements on Joining SSURGO Data
#*There is a new Advection/Diffusion (AD) module for TUFLOW. TUFLOW AD simulates depth-averaged, two and one-dimensional constituent fate and transport. Both dissolved and particulate constituents can be simulated. TUFLOW AD adaptively expands its computational stencil (between third to ninth order) in areas where strong constituent gradients are identified. The module is fully supported within SMS including the ability to support spatially varied initial concentrations and transport coefficients.
#*Using the “Join SSURGO Data” command in WMS 8.3, you can now join more attributes besides those associated with the *.dbf file. Attributes such as hydrologic soil group (HYDGRP), texture, hydraulic conductivity (KSAT), moisture, field capacity (FIELDCAP) and wilting point (WILTINGPT) can now be mapped to the WMS soil coverage.
#Generic Model New Features
#Improvements on GSSHA Stochastic Model Calibration
#*We have added several features to the generic model interface to offer more options for providing a user-interface for models without a custom SMS interface.
#*Besides having the capability of running in calibration mode or batch mode, with WMS 8.3 you can automatically read in and run a model with the calibrated parameters and decide whether or not to substitute them into your model.
#*Now boundary condition and material parameters can now support more than just a floating point or curve value. Each parameter can be enumerated options, boolean, integer, float, curve, text, or float/curve (user chooses which).
#Capability to define an input hydrograph and/or contaminant source at any location in the stream network
#*Now multiple boundary conditions can be assigned to the same entity (node, nodestring or elements). This is particularly handy if you have bc information for multiple solution types (flow and sediment transport).
#*As mentioned previously, WMS 8.3 allows you to specify a contaminant source at any point in your stream network that can account for point-sources in the stream network. In addition, you can define an input hydrograph at any point in your stream network, which can be particularly useful if you want to account for the hydrology of upstream areas into your watershed.
#*The generic model designer can show/hide parameters based upon an enumerated option parameter. For example, the user could choose between chezy and manning roughness approaches and show the appropriate parameters depending upon the choice. Boundary condition and Material properties can use global parameters or their own parameters to base the hide/show logic.
#*The designer can also choose to have multiple material groups (roughness/sediment).
#*In order to accomplish the features above and make parameters as consistent as possible, some existing card definitions have changed. This will necessity changes for models using the generic model interface and migrating from SMS 10.1 to 1.0.0.
#CMS Updates
#*CMS Flow now supports the ability to run a coupled CMS Flow/CMS Wave model without the use of the steering module (inlined). Running the models inlined minimizes the file IO for the models decreasing runtimes.
#*CMS Flow also supports an optional Implicit solution scheme allows for longer time-step sizes and parallel runs so you can distribute your work across all of your processor cores.  The option to change which mode (2D or 3D) CMS Flow runs in has been removed.  By default, CMS Flow will run in 2D.
#*CMS Wave has several new features including the ability to define a muddy bed, non-linear wave effects, infragravity wave effects, spatially varied wind field, xmdf output, and a Gauss-seidel solution scheme that allows you to run across multiple processor cores.
#TUFLOW Updates
#*You can now import projects created outside of SMS. Multiple TCF files can be read together to maintain sharing of objects where supported by SMS. Makes it easy for someone familiar with SMS to pick up on a model started by someone else or to help transition to using TUFLOW within SMS.
#*You can now choose to output datasets in XMDF format which is much faster (basically instant) for loading datasets into SMS. You can also add custom text to the output options to choose items not supported by SMS.
#*You can now create, manage, and use irregular culverts from inside the SMS interface.
#*You can now choose to have SMS write zpts to a new xf file format that is binary and very fast to read/write.
#*Includes manhole support for the new TUFLOW manhole features. You can specify options for the automatically generated manholes and override these settings using a TUFLOW manhole coverage.
#*You can now select grid cell locations (9 cell locations used by TUFLOW) using the “Feature objects->Select/Delete Data” command.
#Cartesian grids store their own projection and reproject on the fly
#*You can now have a projection associated with each of your cartesian grids. The grid will be reprojected on the fly into the working projection for display purposes. You can right-click on the grid and choose “Work in grid projection” to easily change your working projection to the grid’s projection which is required for working with the grid and using tools.
#*Note: Bouss2D and CMS-Wave do not currently have the ability to save this projection information.
#STWAVE Updates
#*We are now linked to STWAVE version 6 which has new file formats and improvements made by the model developers. You can now extract boundary conditions from a larger WAM run and have improved iteration control for the full-plane version. The new interface/model allows you to specify names for your boundary condition cases.
#Improved Crash Reports
#*The crash reports from SMS now contain more information often enough for our developers to fix the issue without any user interaction. Please allow SMS to post this information so our developers can fix issues that arise.
#Dynamic background images from the web through ArcGIS
#*If you have ArcGIS on your computer, you can use the GIS module within SMS to get background imagery that updates on the fly from the internet.
#Particle module/PTM changes
#*Particle sets can have a projection defined and are reprojected on the fly.
#*You can estimate the number of particles that will be generated in by a PTM source coverage. This helps ensure you don’t accidentally generate so many particles that the computations take to long.
#*Virtual gages - You can use virtual gages to determine concentrations and other data around a point or within a polygon.
#*Particle filters - You can use particle filters to display a subset of particles to use for display, selection and compute grid datasets. You can use this to look at particles from particular sources, etc.
#Bouss2D changes
#*You can now have variable roughness defined by map polygons for a Bouss2D simulation
#GenCade changes
#*Wave gage event wave directions can now be specified in conventions other than shore normal, such as meteorological and oceanographic.
#*Left and right bypass coefficients can be specified for inlets.  The Y Left and Y Right have been removed and replaced by the left and right bypass coefficients.
#General Features
#*If you do ''File'' | '''Save as''' and choose an image file, SMS writes an associated world and projection file
#*You can change the symbol size used in plots
#*You can convert mesh elements to polygons using '''Mesh&rarr;Map.''' This makes it possible to get your mesh elements into a shapefile
#*SMS now uses the existing background for flowtrace and drogue plots rather than have this specified separately
#*''Zoom to'' options to easily see specific information including: zoom to mesh, grid, scatter, and selections
#*Option to always use white when printing rather than current background color
#*You can now import TINs from LandXML files
#*Find/select map points, arcs, and polygons by id (use zoom to selection to find in busy coverages)


|- valign="top"
|- valign="top"
| [[SMS:What's New in SMS 10.1|10.1]]
| [[WMS:What's new in WMS version 8.2|8.2]]
|
|
*2009 Oct - beta
*2009 Mar - beta
*2011 Jan - final
*2009 Apr - final
|
|
#64-bit Version
#[[WMS:GSSHA_Calibration_(Auto)|Support of calibration and batch mode processes (stochastic modeling) in the GSSHA interface]]
#*SMS now distributes a 64-bit version. This version can access far more memory than the 32-bit version can so it is useful for working with large sets of data. The installation is the same for the 32 and 64 bit versions of SMS. You can choose the version to install if you have a 64-bit operating system. Both versions can be installed by running the installation twice. The performance (speed) of this version is basically the same as the 32-bit version. This version requires a 64-bit operating system (Vista-64 bit recommended).
#*Using WMS 8.2, you can run GSSHA in calibration mode to determine optimum parameters or in batch mode to run using a range of input values.
#General Features
#[[WMS:Define_and_Smooth_Streams|Improved stream model checker, better stream visualization, stream adjustment to match grid, and improved stream smoothing]]
#*[[SMS:Dataset Toolbox|Dataset Toolbox]] &ndash; New dataset toolbox has new methods to create datasets as well as organizing some of the existing options. The new features include: creating comparison datasets, sampling datasets at specific times, computing derivatives or changes through time, and filtering datasets.
#*The hydrologic modeling wizard has been improved in WMS 8.2 to allow for editing stream elevations before creating a 2D grid. When the 2D grid is generated, the grid cell elevations are set to match the stream elevations. Matching up these elevations reduces the chance for errors in running your GSSHA model when stream routing is defined.
#*[[Annotations|Annotations]] &ndash; New annotation tools allow the creation of scale bars, North Arrows, screen space images for Logos, as well as rectangles, ovals, and lines in either screen or world space.
#Ability to create [[WMS:GSSHA Multiple Simulations|multiple GSSHA scenarios]] (multiple GSSHA job controls, sets of index maps, mapping tables, solutions, etc.)
#*[[SMS:Data Calculator|Data Calculator]] &ndash; The data calculator now includes functions to take the average, minimum, or maximum of all the time steps of a dataset and is included in the dataset toolbox.
#*Multiple scenarios, such pre-development and post-development conditions, can be defined in a single instance of WMS. Each of these scenarios can be run and the results from each scenario can be compared.
#*[[KMZ_files|KMZ Filmloop Export]] &ndash; In addition to saving raster or vector data from SMS, you can now create animations that can be opened in Google Earth.
#[http://gsshawiki.com Support of wetlands, sediment transport, and groundwater/surfacewater interaction routines in GSSHA]
#*[[SMS:Dynamic_Tools|Graphical Selection Tools]] &ndash; The modifier keys for graphical selection tools have been expanded and made consistent.
#*WMS 8.2 contains full support for wetland, sediment transport, and groundwater/surfacewater interaction capabilities in GSSHA. Tutorials for each of these capabilities are available on [http://gsshawiki.com gsshawiki.com].
#*Projections &ndash; SMS now includes many more GIS projection systems (previously referred to as Coordinate Systems) and can use projection (prj) files associated with images and GIS files. SMS can also create projection files.
#[[WMS:GSSHA_Embankment_Arcs|Improved ability for defining embankment arcs]]
#*[[SMS:Images|Image Projection Changes]] &ndash; Images now store their native projection and will automatically be displayed in the working projection.
#*WMS 8.2 has improved ability for defining [[WMS:GSSHA_Embankment_Arcs|embankment arcs]] and running GSSHA embankment routines that was not available in previous version of WMS.
#*[[SMS:Data_Toolbar|Measure Tool]] &ndash; SMS now includes a simple tool for measuring distances.
#Support of HEC-RAS 4.0 and sediment transport
#*[[SMS:SMS Menus#Web Menu|Web Menu]] - New menu for accessing importing data from the web.
#*WMS 8.2 contains support for the latest version of HEC-RAS, version 4.0, which has sediment transport capabilities.
#*[[SMS:Preferences|Model Priority]] &ndash; There is a new preference that allows the user to specify the priority to launch numeric models.
#Improved web service client tools
#*[[SMS:Vector Display Options|Vector Display Options]] &ndash; Vectors can now have their center or tip positions at the node or grid location being drawn at. This can be useful to prevent vector arrows to appear on land.
#*WMS 8.2 Includes all types of NED and SRTM elevation data downloads, Terraserver images, and a web catalog that allows you to download any type of data if the data is available. These data sets can be downloaded directly from WMS and from the hydrologic modeling wizard. In WMS 8.2, practically all of the data required for a hydrologic study can be downloaded directly from WMS for any location in the world.
#*[[SMS:Vector Display Options|Stick Plots]] &ndash; Vectors can now be displayed on specified points from a map coverage at points or along vertices on an arc. This can be useful for comparing data obtained along a transect.
#[[WMS:Setting_up_Film_Loops|Output animated KMZ files to Google Earth]]
#*[[SMS:Images|Save As Image]] &ndash; You can now save the contents of the graphics window to a jpeg or bitmap by doing a file save as and changing the save type.
#*One of the results from running a GSSHA model is water depth at any location of your watershed for any time during your simulation. With WMS 8.2, you can export an animation of the water depth contours and any other parameter that is computed in GSSHA to a file that can be read by Google Earth. This capability is great for presentations of GSSHA model results.
#*Remote desktop &ndash; In SMS 10.0, the screen would go blank if you started a remote session to look at an already running instance of SMS. This has been resolved.
#Dataset zonal classification
#*Edge Swap &ndash; You can now set a general preference to turn on/off automatic refreshing after an edge swap.
#*Using WMS 8.2, you can combine datasets such as erosion and deposition to view areas of low erosion and high deposition or high erosion and low deposition based on certain criteria. You can view the results of these queries throughout your watershed.
#Cartesian Grid Module
#*[[SMS:Cartesian Grid Tools|Interpolate Bathymetry to cells]] &ndash; You can now interpolate new bathymetry to the selected cells in a Cartesian grid without updating the entire grid.
#*[[SMS:Grid Smoothing|Smoothing ]] &ndash; The smoothing options for a cartesian grid have been expanded to allow smoothing only on a portion of the grid.
#*[[SMS:Project Explorer Right-Click Menus|Duplicate Grid]] &ndash; You can duplicate an entire cartesian grid to create a second simulation that can be changed without altering the initial simulation.
#*[[SMS:Converting Feature Objects#Map to 2D Grid|Cartesian Grid mapping]] &ndash; Map to grid attributes are now stored with the grid frames so it is easy to go back and create new grids with modified parameters (such as cell size).
#*[[SMS:Cartesian Grid Module#Project Explorer|Transformed Cartesian Grid]] &ndash; You can transform an STWAVE or CMS-WAVE grid to realign it to the directions of the waves.
#*[[SMS:CMS-Flow/CMS-Wave Steering|Steering Module]] &ndash; The steering module now allows you to choose the grids to use when multiple cartesian grids exist.
#Map Module
#*Animating profile plots now supports multiple datasets &ndash; (before only the active dataset could be animated)
#*[[SMS:Observation Profile Plot|Observation Profile Plot]] &ndash; Profile plots now have the ability to plot multiple time steps on a single plot.
#*[[SMS:Feature Stamping|Feature Stamping]] &ndash; Feature stamps now automatically create breaklines appropriately when stamping to a scatter set (TIN).
#*[[SMS:Spatial Data Coverage|Spatial Data Coverage]] &ndash; New coverage type can be used to display compass plots at locations (such as wind velocities/directions).
#Scatter Module (TINs)
#*[[SMS:Breaklines|Scatter Breaklines]] &ndash; SMS now supports breaklines on scatter sets. Breaklines can be manually created, created from converting Map data (CAD or GIS to Map then scatter), created automatically when using feature stamping, or can be imported using the import wizard.
#*[[SMS:Scatter Menu|Merge Scatter Sets]] &ndash; Merging scattersets can now preserve triangulation of initial scattersets where the scattersets to merge do not overlap.
#*CAD/GIS faces to triangles &ndash; AutoCAD or ESRI 3D shapefiles with polygons representing faces can be converted directly to scatter triangles. This makes it easy to get AutoCAD or ESRI TIN data (export DWG/DXF or 3D Shapefile format) into SMS without having to retriangulate and fix the triangulation.
#*[[SMS:Process Boundary Triangles|Process Boundary Triangles]] &ndash; This new tool can be used to remove unwanted boundary triangles converted on the edge of the domain.
#*Move Scatter Vertices &ndash; You can now unlock the scatter set using the vertex menu and move scatter vertices.
#*[[SMS:File Import Wizard Supported File Formats|File Import Wizard Additions for breaklines]] &ndash; Breaklines can be imported using the import wizard.
#CMS
#*[[SMS:CMS-Flow Model Control 11.2#Salinity|CMS-Flow Salinity]] &ndash; CMS-Flow can now calculate salinity.
#*[[SMS:CMS-Flow Model Control 11.2#Advanced Cards|CMS-Flow Advanced Cards]] &ndash; This dialog can be used to specify options that are supported within the CMS-Flow model but are not yet part of the SMS interface. Primarily useful for developers.
#*[[SMS:CMS-Wave Model Control|CMS-Wave Simplified Formulation]] &ndash; New run mode for CMS-Wave that allows quicker runs for faster preliminary simulations.
#*[[SMS:CMS-Wave Cell Attributes Dialog|CMS-Wave Structure Types]] &ndash; New structure types with additional parameters that can be provided.
#Generic Mesh Model
#*[[SMS:2D Mesh Files *.2dm|2D Mesh Files (*.2dm)]] &ndash; The generic model interface can now export full curves rather than sampling the curves based upon the time step value.
#STWAVE Model
#*[[SMS:STWAVE_Model_Control|STWAVE Time Support]] &ndash; You can now reference input spectra to specific time values or have each spectra independent of time.
#TABS Model
#*[[SMS:RMA4 Boundary Conditions|RMA4 Element Loading]] &ndash; You can now add a mass loading directly to individual elements for an RMA4 advection/dispersion simulation.
#TUFLOW
#*[[SMS:TUFLOW ZShape|TUFLOW ZShape]] &ndash; New coverage type used to modify geometry. It is similar to the geometry modification coverage but has more options including the ability to have the geometry vary with time.
#*[[SMS:TUFLOW Coverages#TUFLOW 2D Flow Constriction Shape coverage|TUFLOW 2D Flow Constriction Shape coverage]] &ndash; New coverage type used to create 2D structures. These structure can be layered flow constrictions which allow flows both below and above a bridge deck.
#*[[SMS:TUFLOW Inlet Database|TUFLOW Inlet Database]] &ndash; For urban storm drain models, you can provide curves that describe the amount of flow captured by storm drain inlets based upon the depth of flow in the 2D cells rather than the shape options previously available.
#*[[SMS:TUFLOW Coverages#TUFLOW 1D Network Coverage|TUFLOW Network Node SX Additions]] &ndash; 1D nodes can be directly connected to a 2D domain without the need for SX lines or a connection coverage.
#*[[SMS:TUFLOW_Model_Parameters#Eddy_Viscosity|TUFLOW Eddy Viscosity Options]] &ndash; The eddy viscosity used in the model can now be specified as a combination of a fixed eddy viscosity added to a computed smagorinsky viscosity value.
#Features No Longer Supported
#*The models HECRAS and GENESIS are no longer supported in SMS. Our sister program [[WMS:WMS|WMS]] has an interface for HEC-RAS for those who are interested.
#*The RMA4 interface no longer supports BOD/DO since this functionality does not function correctly in RMA4.


|- valign="top"
|- valign="top"
| [[SMS:What's New in SMS 10.0|10.0]]
| [[WMS:What's new in WMS version 8.1|8.1]]
|
|
*2008 Feb - beta
*2008 Oct - final
*2009 Feb - final
|
|
#General New Features
#Storm water quality and quantity modeling with xpswmm and EPA SWMM interfaces
#*<div>'''Vista Support''' &ndash; Text rendered in earlier versions of SMS did not display correctly when run under Windows Vista. This has been fixed in SMS 10.0.</div>
#*The Storm Water Management Model (SWMM) is a popular model used to simulate the hydrology and hydraulics of storm water runoff. SWMM is primarily used for urban areas, and can be used to model single event or long-term (continuous) simulation of runoff quantity and quality.
#*<div>'''Graphics Improvements''' &ndash; The display pipeline has been completely overhauled in order to support hardware acceleration and reduce memory usage. In addition fill behind labels and aligning automatic contour labels with linear contours now work.</div>
#*With WMS 8.1, you can delineate a watershed and then export the delineated watershed boundaries and the WMS-computed watershed data to [http://www.xpsoftware.com/ xpswmm] or [http://www.epa.gov/ednnrmrl/models/swmm/index.htm EPA SWMM].
#*<div>'''Improved DWG Support''' &ndash; SMS 10.0 now supports AutoCAD files up to and including version 2008. In addition, AutoCAD files are displayed in 3D rather than 2D background data as in SMS 9.2.</div>
#Spatially Distributed Hydrologic Modeling with [[WMS:GSSHA|GSSHA™]]
#*<div>'''[[KMZ_files|KMZ File]] Export''' &ndash; SMS can now export the currently displayed image as a raster with geo-referencing in a *.kmz file. [[KMZ_files|Kmz files]] can be visualized inside of [http://earth.google.com/ Google Earth].</div>
#*New to WMS 8.1 is full support and documentation for the distributed hydrologic model GSSHA™. Several improvements have been made to the GSSHA™ interface in WMS 8.1. The entire process of creating GSSHA™ models and running GSSHA™ models has been streamlined in the [[WMS:Hydrologic Modeling Wizard|Hydrologic Modeling Wizard]]. The water quality modeling interface and capabilities of GSSHA™ have been significantly improved. Nutrient modeling capabilities have also been improved. Several post-processing features have also been added that allow you to more effectively view water depth along each of the stream channels in the GSSHA™ model. We have added two new tutorials and a new volume ([[WMS:WMS_Tutorials#Volume_6:_.28New_in_WMS_8.1.29_Download|Volume 6]]) to our list of WMS tutorials that walk you through the process of setting up a basic GSSHA™ model with overland flow and stream routing and using NEXRAD Radar precipitation with your GSSHA™ model. A new web site, [http://www.gsshawiki.com '''gsshawiki.com'''], has also been launched. This web site contains all the latest GSSHA™ documentation and a wealth of information for GSSHA™ modeling.
#*<div>'''[[Import_from_Web|Import Data From Web]]''' &ndash; When importing data from Terraserver, SMS brings up a locator tool where you can locate the area to download using Microsoft Virtual Earth.</div>
#[[WMS:Radar Rainfall|HMS gridded rainfall (NEXRAD) support]]
#*<div>'''Arc Groups in Profile Plots''' &ndash; When observation arcs are joined into arc groups, profile plots will join the data end to end rather than seeing separate curves. This allows the creation of a single curve in a profile plot from several arcs. Since each arc can have its own color it makes it easy to identify specific locations in the data.</div>
#*WMS 8.1 supports an exciting new feature that makes it easier to work with quasi-distributed hydrologic models. This feature makes it simple for you to use NEXRAD RADAR rainfall data in XMRG format, such as [http://dipper.nws.noaa.gov/hdsb/data/nexrad/nexrad.html archived rainfall data from the National Weather Service]. This feature allows you to read a set of NEXRAD rainfall grids and compute the Thiessen polygon-based gage weights for each sub-basin and the total precipitation (or a precipitation distribution) for each gage based on the rainfall grids.
#*<div>'''Hide Unavailable Features and Unused Options''' &ndash; The display options dialog by default only shows options for data that currently exist in SMS. When selecting a coverage type only coverages associated with registered features or models are put into the list. The preferences dialog also only works with registered features. These changes make it easier for users to find the options they want to use by hiding irrelevant features or options.</div>
#*WMS 8.1 also has features that allow you to convert radar-derived precipitation grids directly to formats that can be used in two different hydrologic models: The quasi-distributed [[WMS:WMS_Tutorials|MODClark model]], which is part of [[WMS:HEC-HMS|the HMS interface]] and the distributed [[WMS:GSSHA|GSSHA™ model]].
#*'''[[SMS:Animations|Filmloop]] Compression options''' &ndash; You can now select a compression codec and associated quality in order to build smaller filmloop files.
#Improved HMS interface and MODClark modeling support
#*'''Functional surface options''' &ndash; It is now possible to color a functional surface using all of the options available for color filled contours.
#*Several improvements have been made to the HMS interface in WMS 8.1.
#*'''Help system is a Wiki''' &ndash; Rather than distribute chm files with SMS, the help is now found on a Wiki. This allows more people to get involved in updating the information.  We are working hard to improve the help contents currently available.
#*One of the most exciting improvements allows you to define a grid representing an HMS MODClark model at any resolution and compute a Curve Number, rainfall value, and travel time at each cell on the grid. After defining the MODClark model in WMS, you can export the model to HMS and run the MODClark simulation. The powerful MODClark modeling capabilities in WMS are not available in any other software product.
#[[SMS:ADCIRC|ADCIRC]]
#Storm water quality and quantity modeling with xpswmm and EPA SWMM interfaces
#*'''Spatial Attributes''' &ndash; The ADCIRC interface now supports distributed spatial attributes (fort.13) files.
#*Besides supporting hydrologic modeling with xpswmm and EPA SWMM, WMS supports hydraulic modeling through the "Storm Drain" coverage and the River module. You can import or draw a conceptual model of your storm drain networks in the storm drain coverage and then convert your conceptual model to a schematic in the River module. From the river module, you can export your storm drain network to xpswmm or EPA SWMM where the model can be run. Using the new WMS feature to export (and import) xpswmm and EPA SWMM files, you can build your model and perform model computations in the familiar and GIS-enabled WMS interface. After building and defining your model in WMS, you can export your model to SWMM and finish your model and view the results in the SWMM interface.
#[[SMS:CGWAVE|CGWAVE]]
#Updated HY-8 7.1 culvert analysis computations and an improved interface
#*'''Spatially varied bed friction and floating docks''' &ndash; An updated version of CGWAVE (version 2.0) is now supported in SMS 10.0.  This version includes options for spatially varied bed friction and floating docks.
#*WMS 8.1 has an improved interface with the FHWA HY-8 culvert analysis program. Since HY-8 7.1 was developed by Aquaveo (the developers of WMS), we were able to integrate the HY-8 7.1 culvert analysis interface and code directly into WMS. With the new HY-8 Culvert coverage, you can define the location of your culvert and edit the data associated with a culvert. The WMS software developers have also linked the HY-8 culvert coverage with the detention basin calculator, allowing you to route a hydrograph through a culvert and determine the effect of the culvert on the hydrograph. The WMS HY-8 interface offers report generation, energy dissipation structure analysis capabilities, and many other powerful features directly within the WMS interface.
#*'''Test Problems''' - A new set of test problems is also provided to illustrate model capabilities
#Improved support of FHWA hydraulic modeling tools
#[[SMS:CMS-Flow|CMS-Flow]] (previously M2D)
#*WMS 8.1 has improved the support of the FHWA hydraulic modeling tools. The channel calculator, weir calculator, and the curb and gutter calculator have all been improved to more effectively coincide with FHWA's HEC 22 computation guidelines.
#*'''Model Improvements''' &ndash; The CMS-Flow interface in SMS 10.0 has been refreshed and updated to support for CMS-Flow v3.5. This version uses XMDF simulation files and can be run in explicit or implicit mode.
#General Enhancements
#*'''Interface Improvements''' &ndash; Project management has been simplified, improved model parameter checking, and you can now work with input wave climate datasets outside the steering module.
#*In WMS 8.1, the "Get Data" toolbar has been expanded to include two new buttons: The "Get Data From Map" button and the [[WMS:Hydrologic Modeling Wizard|"Hydrologic Modeling Wizard" button]]:
#[[SMS:PTM|PTM]]
#Virtual Earth map locator tool
#*'''Model Improvements''' &ndash; The latest version of [[SMS:PTM|PTM]] (version 2.0) is now supported in SMS 10.0. [[SMS:PTM|PTM]] 2.0 supports hydrodynamic input from [[SMS:ADCIRC|ADCIRC]], ADCIRC3D, CH3D, [[SMS:CMS-Flow|CMS-Flow]], AND CMS-Flow3D. Additional computation and output options are also available in [[SMS:PTM|PTM]] 2.0.
#*The "Get Data From Map" button brings up the WMS Virtual Earth map locator tool. This tool is powered by Microsoft Virtual Earth, and accesses data from the internet to allow you to view maps anywhere in the world. Once you zoom into the region you're interested in modeling, WMS will bring up a web data service client which will allow you to select from several data download options. From this dialog, you can select to download NED (DEM), Land Use, or Microsoft TerraServer aerial imagery and topographic data. The data you select is downloaded and read into WMS. This powerful combination of tools will allow you to streamline your data collection process so much of your data collection can be done within the WMS interface.
#*'''Interface Improvements''' &ndash;  The [[SMS:PTM_Model_Control|PTM Model Control]] has been redesigned.  Mathematical operations can be performed on particle datasets using the [[SMS:Data Calculator|Data Calculator]].  The [[SMS:Particle_Display_Options|particle display options]] have been expanded. New post processing features include [[SMS:Particle Module Compute Grid Datasets|creating datasets]] on a cartesian grid of particle count, accumulation, rate of accumulation, deposition, exposure, concentration, and dosage.
#Improved web service client tools
#[[SMS:TUFLOW|TUFLOW]]
#*Along with the virtual earth map locator tools, the web service client capabilities of WMS have been greatly improved. In previous versions of WMS, WMS had difficulties downloading data. Many of these difficulties originate from the web service servers, and WMS cannot improve much on these problems. However, the WMS developers have streamlined our web service client tools to give you feedback on the status of your downloads and to fix several problems that were in previous version of the web service client.
#*'''Model Improvements''' &ndash; A new boundary condition type has been added for a stage vs flow rating curve generated automatically from a water surface elevation slope.
#[[WMS:Hydrologic Modeling Wizard|Hydrologic modeling wizard]]
#*'''Interface Improvements''' &ndash;  The [[SMS:TUFLOW#SMS Interface|TUFLOW interface]] for boundary conditions has been simplified for ease of use. The interface now supports the ability to generate and manage multiple 2D domains to allow for changes in resolution. The interface now also supports 2D flow constrictions to model bridges, peirs, or large culverts in 2D.
#*The [[WMS:Hydrologic Modeling Wizard|"Hydrologic Modeling Wizard"]] button in the Get Data toolbar steps you through the process of building a hydrologic model. This powerful wizard starts by helping you define your project coordinate system and gather your data, then steps you through the process of delineating your watershed and computing the parameters for your hydrologic model. When you are done with the wizard, you will have a hydrologic model that is completed or nearly completed for any of the hydrologic models supported in WMS.
#[[SMS:CMS-Wave|CMS-Wave]] (previously WABED)
#Improved graphics
#*'''Version/Feature Update''' &ndash; SMS 10.0 interfaces with [[SMS:CMS-Wave|CMS-Wave]] v 1.67. This version of [[SMS:CMS-Wave|CMS-Wave]] includes functionality to allow wetting and drying, consider constant or spatially varied bed friction, and use constant or spatially varied forward and/or backward reflection. Parameters have also been added to allow user control of the intensity of diffraction and the type of wave breaking formula to use.
#*The WMS graphics display speed has been dramatically increased. Previous versions of WMS used a software-based approach to rendering your data, but WMS 8.1 uses your graphics hardware to render your data. Along with this modification, the WMS software developers have added Windows Vista graphics support to WMS 8.1.
#Models Removed From SMS
#A new user-editable WMS "Wiki" online help
#*The following models are no longer available or supported in SMS 10.0:
#*The WMS software developers have developed the [http://www.xmswiki.com xmswiki.com] home page. Instead of the traditional WMS help file, all the help is now available online from the xmswiki.com site. This help site uses the "Mediawiki" engine, which is the same code base used by [http://en.wikipedia.org Wikipedia] to run their site. This means that anybody who knows about WMS, including you, can modify a help topic or create a new topic. Be assured that the WMS software developers will monitor changes to the WMS wiki, so the xmswiki.com content will be accurate. But with this powerful online editing tool, the WMS help will be much more comprehensive and up-to-date. The xmswiki.com site also features a Google search engine, bringing the power of Google search to the WMS help pages.
#**SED2D
#XMDF file I/O
#**HIVEL
#*The WMS 8.1 file format has been modified to use the [[XMDF]] file format as the default format. This format provides for faster WMS file I/O and good WMS file viewing capabilities with the [http://hdf.ncsa.uiuc.edu/hdf-java-html/hdfview/ NCSA HDFView] editor which can be used to edit any XMDF-formatted file.
|}
|}


{{Navbox WMS}}
{{Navbox WMS}}

Latest revision as of 18:14, 21 May 2021



<sms 12.0 never left beta, went to 12.1>

<sms 10.0 might be the oldest one they've got, from 2008>

<use bug fixes pages to get dates>

<go to what's new pages, might also have dates>

<don't do sms 13.2, don't do unreleased ones>

<copy stuff out, format to make sure fits tables>

<some might not have beta releases>

<do not reformat what's new pages and bug fix pages>

<not expected done today, fine if take rest of week>

<don't know how fast it's going to go>

<also want one for wms>

<will need to look at it when it's done to see how it is>

<keep notoc>

<double-check categories to make sure going to the right place, product working on>

<put in links as appropriate>

<get idea of gms page setup, learn how to convert what's new into version history>

<turn items into bolded lists? could be tedious?>

<when finish SMS 10.0 or 13.1, come get him and see how looks in table and go from there, send him link, don't have to wait for him to start meeting>

<don't include images in version history>

<maybe think about adding Model versions released when done with going through all the versions?>

<get rid of text links in third column>

<can't do the grabbing of text like they do for WMS, set up differently>

WMS Version History
Version Date Changes
11.1
  • 2021 Apr - beta
  1. GIS Module
    • Faster/more robust GIS parameter computations directly from shapefiles.
    • Faster shapefile to feature object conversion.
    • Improved display speed of large raster files.
    • Addition of Web-based Google tile map services as Online Maps that can be displayed as background maps.
    • Additional features to online maps to use tile map services and other types of services as online maps.
    • Improvements to display and operations on images and raster files of various types.
  2. GSSHA
    • View multiple scenario hydrographs in GSSHA solution:
    • Added capability to run calibration on Richard’s Equation parameters in GSSHA.
  3. Map Data
    • Extract Features tool that allows directly converting raster data to stream and ridge/embankment centerlines.
    • Map flood tool: Add an option to use local shapefiles for Base Flood Elevations and floodplain boundary polygons when web service data are not available.
  4. Rational Method
    • Better support for entering/computing Rational Method IDF curves.
  5. Models
    • Fix various issues in GSSHA, HEC-1, HEC-HMS, HEC-RAS, NSS, Rational, and MODRAT models and make improvements/updates to model interfaces.
    • Updated to the latest versions of the HEC-HMS (HMS 4.4.1) and GSSHA (7.13) models.
    • Updated versions of HY-8 and Hydraulic Toolbox used with WMS.
  6. General
    • Added option to change the directory used to store temporary WMS files.
  7. Bugfixes
11.0
  • 2018 Aug - beta
  • 2018 Nov - final
  1. Map Flood Tool
    • A new Map Flood tool was added to automatically offset 100-year floodplain maps to analyze extreme flood scenarios. This option can be used to define a vertical offset from a baseline 100-year FEMA floodplain map. This vertical offset is used with readily available web service data to automatically delineate a new floodplain and determine a new, wider floodplain boundary that accounts for this offset. These modified floodplain maps can be used to determine the impacts of extreme weather and flood scenarios on existing and proposed roadways and other structures.
  2. Floodplain Delineation Improvements
    • The floodplain delineation capabilities in WMS 11.0 have been streamlined and improved. In many cases, the floodplain delineation has been sped up by a factor of 10.
  3. Worldwide Elevation Data
    • Support for Amazon Terrain Tiles has been added to the various Import from Web and Get Data tools in WMS. This service provides high resolution elevation data for the entire world with resolutions as high as 3 meters per pixel.
  4. HEC-RAS Cross Section Database Improvements
    • Better support for managing and editing cross section databases for HEC-RAS modeling has been added. A new dialog that allows WMS users to select, manage, and edit cross sections and cross section databases has been implemented.
  5. Support for Reading, Viewing, and Converting LIDAR Data
    • Improved support for reading, viewing, and converting LIDAR data to other formats to use with your model has been added.
  6. HEC-RAS and HEC-HMS Updates
    • Support has been added for the most recent version of HEC-RAS (5.0.3) and the most recent version of HEC-HMS (4.2.1).
    • The option to import HEC-RAS GIS (*.sdf) files has been sped up and improved.
  7. GSSHA Updates
    • Support has been added for the most recent version of GSSHA (7.12).
  8. LandXML Import/Export
    • Support for reading and writing LandXML files from the hydraulic modeling module for the SWMM, HY12, and EPANET models has been added.
  9. Higher Resolution Icons
    • Higher resolution icons allow the icon size to be changed. This is done in the Preferences dialog under the General tab.
  10. Image Crop Collar Option Removed
    • The Crop Collar command is no longer available for images.
  11. Bugfixes
10.1
  • 2016 Jan - beta
  • 2016 Jun - final
  1. Community Edition
    • If WMS is unlicensed, it runs as a "Community Edition". This version of WMS is the full version of WMS with the following limitations:
    1. Maximum number of sub-basins: 1
    2. Maximum number of GIS layers: 2
    3. Maximum number of map module coverages and attribute grids: 3
    4. Maximum number of terrain data layers (DEMs and TINs): 1
    5. Maximum number of storm drain pipes: 50
    • In addition, 2D scattered data, CAD data, 2D grid data, and 1D open-channel hydraulic data (HECRAS) are not allowed in the community edition. Purchase licenses that enable more layers in each of these modules at http://www.aquaveo.com.
    • The community edition has an interface to HY12 that is completely free of charge. This means HY12 models with more than 50 pipes are supported as long as the other conditions of the community edition are met.
    • The community edition allows reading and viewing Rational, NSS, SWMM, EPANET, and other models that exceed these limits, but WMS does not allow saving changes to models that exceed the limits. This edition also allows building storm drain, water distribution, and sanitary sewer models that meet the above criteria as long as the maximum number of pipes is not exceeded. More information about the features enabled in the community edition of WMS and how to purchase WMS packages can be found on the WMS pricing page.
  2. EPANET Model Support
    • WMS 10.1 adds support for the EPANET model, a widely used water distribution model. Read GIS data files and map their attributes to the EPANET model attributes, or read and edit existing EPANET models.
  3. Improved EPA-SWMM Model Support
    • WMS 10.1 fully supports both sanitary sewer options and storm drain options associated with EPA-SWMM models. Read GIS data files and map their attributes to the EPA-SWMM model attributes, or read and edit existing EPA-SWMM models.
  4. Improved HY12 Model Support
    • HY12 is an Federal Highway Administration (FHWA)-sponsored storm drain and hydrology model developed by Aquaveo. The Community edition of WMS 10.1 includes a completely free interface to HY12. There are four new tutorials that describe how to import and use various types of data into WMS to build an HY12 model.
    • WMS 10.1 includes a simplified interface to HY12 that makes developing an HY12 model much easier than before. The spreadsheet-like interface is similar to the EPA-SWMM and EPANET interfaces and much of the data can be transferred between HY12 and EPA-SWMM so data can be shared between these models.
    • In addition, a tool exists that allows editing link/node elevations in an HY12 model using a profile editor.
  5. Time Series Data Calculator
    • Use the Time Series Calculator in the Time Series Editor program to perform simple mathematical operations using time series data.
  6. GSSHA Model Improvements
    • Several GSSHA model improvements have been made related to better calibration and renumbering streams.
    • Mine Water Balance Model (MWBM) Wizard
    • The MWBM wizard steps through the process of editing and modifying a GSSHA model based on changes to the terrain, land use, pumping stations, embankments, and other parameters in a mine model that is tracking sediment output from the mine.
  7. Bug fixes
10.0
  • 2014 Jun - final
  1. Model Calibration Updates
    • The newest version of GSSHA supports PEST-style automated calibration methods. WMS 10.0 has an interface to these automated calibration methods in GSSHA. WMS 10.0 allows you to have multiple calibration points and allows you to calibrate to observations other than outlet flow values such as depths, snow water equivalent, and other parameters. More information about automated calibration in GSSHA using WMS 10.0 is located here and here.
  2. Depth Varying Overland Flow Roughness
    • The newest version of GSSHA has a mapping table that supports a depth-varying overland flow roughness exponent. This parameter is used in addition to the roughness mapping table. Without the addition of this table, a default exponent of 0.0 is used, which means the roughness does not change with overland flow depth.
  3. Link/Node-Specific Overbank and Backwater Options
    • GSSHA previously had two options that could be defined globally. The first option, the overbank flow option (OVERBANK_FLOW), increases the level of connection between the overland flow and the channel in the 1D hydraulic model by allowing water to spill from the channel back onto the overland flow plane. If the second option, the overland backwater option (OVERLAND_BACKWATER), is turned on, flow from the overland flow model to the channel in the 1D hydraulic model is restricted if the elevation of the water in the channel exceeds the overland cell elevation. This option can now be defined at each of the arcs (links) in your GSSHA model in the GSSHA arc properties dialog. If this option is defined for one of the arcs, the global option is turned off.
  4. Storm and Tile Drain Interface Tools
    • WMS 10.0 contains many new GSSHA storm and tile drain interface tools. A detailed description of all the tools is available here.
  5. New GSSHA Tutorial
    • Several of the GSSHA tutorials have been updated to reflect changes to GSSHA and its interface, especially the storm and tile drain tutorial and the calibration tutorial.
    • Also, a new tutorial has been added to the list of WMS tutorials under the Spatial modeling section. This tutorial describes how to convert an HMS model to a GSSHA model using simple, easy-to-follow steps from the WMS interface.
  6. Support for HMS 4.0
    • WMS 10.0 supports HMS 4.0. This new version of the HMS model is included with the WMS installation.
  7. DSS Grid Parameters
    • The capability of computing several gridded DSS parameters and exporting them to a DSS file for use in HMS has been added to the HMS ModClark interface. In addition, several types HMS grids can be computed and exported with your HMS model. A grid can be defined at any resolution and Green Ampt, SMA, and Curve Number parameters can be computed using land use and soil maps. In addition, snowmelt parameters, evapotranspiration parameters, infiltration parameters, and other hydrologic parameters can be interpolated to your grid from scattered data and then exported to your HMS ModClark model.
  8. New HMS Tutorial
  9. National Streamflow Statistics (NSS) 6.0 Support
    • WMS 10.0 supports NSS version 6.0 with the updated database, which contains all the latest regression equations for the United States as of May 2014.
  10. Sanitary Sewer Modeling Options
    • Sanitary sewer modeling tools have been added to the EPA SWMM interface in WMS. The following tools have been added to the WMS interface that allow you to define sanitary sewer models and read existing sanitary sewer models:
    1. A sanitary sewer coverage.
    2. An option to define diurnal curves and assign curves to nodes/manholes.
    3. An option to import infiltration and domestic flows from ESRI shapefiles and to export these values to EPA SWMM.
    4. An option to import a peaking factor for the domestic flows and export these values to EPA SWMM
    5. An option to import SWMM 5 models with sanitary sewer options and export these models to ESRI shapefiles
  11. SWMM 5.1 Support
    • WMS 10.0 Supports the most recent version of SWMM, version 5.1.
  12. FEMA Flood Maps
    • The capability to read FEMA Flood Maps using web services has been added to WMS 10.0. Options to import both raster flood images and vector floodplain boundary maps are available.
  13. Flood Map Legend
    • The FEMA flood map legend for FEMA flood images downloaded to WMS 10.0 is shown below:
  14. NOAA Atlas 14 Data
    • Getting a precipitation value has never been easier with the option to get NOAA Atlas 14 data for a delineated watershed in WMS. Options are available to get the mean, upper confidence interval value, and lower value for most watersheds delineated within the United States. The button to get NOAA atlas 14 precipitation values data is available for the commonly used watershed models in WMS, including HMS, HEC-1, and GSSHA. Just select the rainfall hyetograph option for any of these models and a button will appear that allows you to get the precipitation from the web.
  15. NCDC Station Wizard
    • The NCDC Station Wizard allows you to view rainfall gage stations surrounding your watershed, analyze the data associated with these stations, and download the rainfall data. When the data is downloaded, WMS creates creates a rain gage coverage and assigns the rainfall data to gages in this coverage. These gages can then be used in the GSSHA, HMS, or HEC-1 hydrologic models. This exciting tool makes it possible to download historic rainfall data for many areas directly from WMS and then use this historic data in your watershed model.
  16. Bug fixes
9.1
  • 2013 Feb - final
  1. Add GIS Data Command
    • The Add GIS Data command in the Get Data toolbar allows a user to read many formats of vector and raster GIS data. After reading the data, it can be viewed or converted to a format that can be used for hydrologic modeling in WMS.
  2. Raster Display Options
    • If there is raster elevation data read using the Add GIS Data command or if there is online data that contains raster elevations, there are various options for displaying hill shading on the raster data. A user can also convert any raster elevation data to a DEM.
  3. GIS Vector Data Conversions
    • GIS Vector Data can be converted to a shapefile. Once the GIS data is converted to a shapefile, it can be used in any of the hydrologic modeling computations for tasks like computing curve numbers and infiltration coefficients.
  4. Raster Data Conversions
    • Raster data with information about land use or soil type can be converted to a land use or soil type grid by right-clicking on the layer. USGS NLCD and European CORINE Land use data can also be downloaded for anywhere in the United States and Europe using the Get Data tool. More information about the new data sources available in WMS 9.1 can be viewed here.
    • WMS DEMs can be exported to several digital elevation file formats, including the following:
      • GeoTiff
      • BIL
      • ERDAS Imaging IMG
      • Surfer ASCII Grid
      • Surfer Binary Grid
      • USGS ASCII DEM
      • XYZ ASCII Grid
      • ArcInfo ASCII Grid
      • DXF 3D Point
      • Float/Grid
      • DTED
      • MapInfo Grid
      • GlobalMapper Grid
      • Windsim GWS
    • All these files as well as many other formats can also be imported using the Add GIS Data button.
  5. Vector/Shapefile Data Conversions
    • Vector GIS data that is read into WMS can be converted to a shapefile and used in WMS or saved to one of the many other supported formats. The supported formats include:
      • DXF Files (*.dxf)
      • Area Shapefiles (*.shp)
      • Line Shapefiles (*.shp)
      • Point Shapefiles (*.shp)
      • Google Earth KMZ Files (*.kmz)
      • MapInfo MIF/MID Files (*.mif)
      • MapInfo TAB/MAP Files (*.map)
      • Simple ASCII Text Files (*.txt)
      • CSV (Comma-separated value) Files (*.csv)
      • SVG Files (*.svg)
  6. GIS Module
    • All images, raster GIS data, and vector GIS data are now stored in the GIS module. In the GIS module, a user can import, export, and convert GIS data to different formats. A user can also map data in the GIS module to data in WMS that can be used to build the watershed models.
  7. TIN Elevations from LandXML Files
    • WMS 9.1 allows the user to read LandXML files as a TIN. This command to import LandXML files preserves the points and the triangle connections that were built in the CAD program that was used to generate the LandXML file.
  8. DGN, DWG, and other CAD File Support
    • WMS 9.1 supports most of the latest DGN, DWG, and DXF file formats through the Teigha library. Currently, WMS 9.1 uses version 3.05.01 of the Teigha library.
  9. Multiple DEMs
    • WMS 9.1 allows the user to read and manage multiple DEMs in the project explorer. Each of these DEMs can have flow directions and accumulations for watershed delineation. A user can clip and modify single DEMs or merge multiple DEMs from different sources into a single DEM. A user can convert raster elevation data in the GIS module to DEMs. These DEMs can be merged and exported to any of the raster elevation formats supported by WMS.
  10. Improved Web Service (Online Data) Tools
    • WMS 9.1 has three tools for obtaining online data: The Get Data tool, the Get Data From Map command, and the Get Online Maps command. All of these tools can be used to obtain various types of raster data: Images, elevation data, land use data, vegetation data, and more.
  11. Get Data
    • The Get Data tool and the Get Data From Map command work in much the same way. The user needs to set the current projection before using either of these tools. The difference is that with the Get Data tool, the user selects the area where data is desired from the WMS window. With the Get Data From Map command, the user selects the area from the Virtual Earth Map Locator window. This Virtual Earth window pops up after selecting the Get Data From Map command. In either case, the user goes to the area of interested and WMS will bring up another window that allows the user to select the type of data to be downloaded. With all the raster data sources, specify a resolution of the data to be downloaded and WMS will download the data.
    • Several new data sources have been added to the Get Data tools in WMS, including various sources for high-quality imagery. Samples of many of the data sources are shown in the new Get Data dialog.
  12. Get Online Maps
    • The Get Online Maps command allows a user to define online data sources to be added to the display. This command was introduced in WMS 9.0, and has been improved in WMS 9.1. WMS 9.1 launches a separate process to download the online data when it is downloading so the user no longer needs to wait for the data to download before working. WMS 9.1 also has tools to convert online data to static data and to convert it to various formats that can be used for watershed modeling.
  13. Texture Mapping on TINs
    • The capability to texture map images to TINs has been added. This capability allows a user to read or download an image using the Get Data tools and then texture map the image on a TIN. This gives the option to create a nice image of the watershed model and to visualize the locations and terrain surrounding hydraulic structures in the watershed. A user can also use the texture mapping capabilities to view flood locations and contours from a HEC-RAS analysis.
  14. GSSHA Snowmelt
    • Several options to support the GSSHA snowmelt models have been added to the WMS interface. When running long-term GSSHA simulations, the GSSHA snowmelt parameters can be modified in the easy-to-use WMS interface. WMS 9.1 also has options to define raster HMET files for use in GSSHA long term simulations.
  15. HEC-RAS Water Surface Elevations
    • If there is an existing HEC-RAS model and the user wants to bring it into WMS, there has not previously been a way to read the water surface elevations from the HEC-RAS solution. Now if the user exports the water surface elevations with the GIS file that's exported from HEC-RAS, WMS reads these water elevations.
  16. SWMM Attributes
    • If the correct attributes have been assigned to arcs in a shapefile, WMS now imports storm drain attributes such as names, shapes, diameters, lengths, and upstream and downstream invert elevations to the SWMM model in WMS. This makes the SWMM modeling easier because the user doesn't have to re-enter the pipe attributes that are already defined in a shapefile.
  17. Bug fixes
9.0
  • 2012 Jan - beta
  • 2012 Oct - final
  1. Updated Interfaces
    • The NSS (National Streamflow Statistics) interface has been updated to use the latest NSS database. The MODRAT interface has also been updated. Renumbering has been improved in the MODRAT interface and several issues have been fixed. Several new features and enhancements have been added to the GSSHA interface. First, the storm and tile drain modeling capability of GSSHA has been improved by adding the capability to add multiple pipes in a "superlink", which represents a network of pipes in GSSHA. The algorithm for determining embankments has also been reworked to make the algorithm more efficient and more accurate. The GSSHA tutorials have also been updated and improved to include the latest enhancements in the GSSHA code. Also, GSSHA itself has been reworked to make the program more stable.
  2. FHWA HY-12 Storm Drain Modeling
    • WMS now includes an interface to FHWA's HY-12 storm drain modeling program. This interface allows you to create a storm drain layout and assign rational method computations, curbs and gutters, access holes, pipes, channels, and other storm drain network features to the storm drain layout. Much of the data can be computed automatically using the interface, and other data values can be entered in the easy-to-use windows. The other storm drain modeling interfaces, including the SWMM and xp-swmm interfaces, have also been upgraded to make your model easier to build and maintain.
  3. Online Image (Web Map Service) Capabilities
    • One of the most exciting new features in WMS is the Get Online Maps tool in the Get Data Toolbar. This tool allows you to open a web map service as an "online image" and use it as you would any other image in the WMS interface. Since the web can be a little slow, there is an option to convert the online image to a static (locally saved) image that is saved with your WMS project and that displays much faster than the online image.
  4. Improved Web Service Tools
    • Six new web services have been added to the list of web data that can be downloaded from the WMS Get Data Toolbar. These web services include some that were previously available, such as United States National Elevation Datasets, as well as newly available datasets, such as the CORINE European land cover database, the NLCD US National Land Cover database, and the ASTER Worldwide Elevation Data database. These new datasets are much faster than previously available datasets and include a progress bar so you can view the progress of your data download.
  5. Support of New File Formats
    • We have added support for almost all the commonly used vector file formats in the new version of WMS. Some vector files, such as DXF, DWG, and ESRI Shapefile format, still read the way they have always read into WMS. But support for "Vector-based images" has been added to WMS that allows you to read any file that can be read using the Global Mapper software in WMS (A license to Global Mapper is not required). For a complete listing of the vector formats supported in WMS, visit the Global Mapper web site. Right-clicking on a vector image allows you to export to one of many formats or convert linear data to feature objects or scattered data (XYZ). The following formats can be exported using the right-click command:
      • DXF Files (*.dxf)
      • Area Shapefiles (*.shp)
      • Line Shapefiles (*.shp)
      • Point Shapefiles (*.shp)
      • Google Earth KMZ Files (*.kmz)
      • MapInfo MIF/MID Files (*.mif)
      • MapInfo TAB/MAP Files (*.map)
      • Simple ASCII Text Files (*.txt)
      • CSV (Comma-separated value) Files (*.csv)
      • SVG Files (*.svg)
  6. FHWA HY-8 7.3 and Hydraulic Toolbox 3.0 Support
    • The FHWA's HY-8 7.3, which includes many new culvert modeling capabilities, is supported in the new version of WMS. The new version of the FHWA's Hydraulic Toolbox (3.0) is also supported with the new version of WMS. The new tools in HY-8 7.3 include modeling of hydraulic jump profiles, broken back culverts (culverts with a change in slope), and horizontal and adverse slopes in culverts. Documentation showing the capabilities included in the latest version of HY-8 is included on the HY-8 wiki. The newest version of the hydraulic toolbox includes tools for culvert assessment and for determining a riprap or streambed gradation curve using a digital image.
  7. Bug fixes
8.4
  • 2011 Feb - final
  1. What's new in WMS 8.4
    • Updated to be compatible with the latest version of GSSHA. New tutorials are available for use with WMS.
    • Integration with FHWA's HY-8 and Hydraulic Toolbox software.
    • HY-8 modeling wizard: Allows you to design or analyze culverts using the linkage between WMS, HY-8, and the Hydraulic Toolbox.
    • Integration of the Time Series Editor with WMS. This tool allows you to find and download data from the internet and to modify existing time series data.
    • New method of computing Flow Directions/Accumulations for basin delineation using TauDEM, allowing for multiprocessor computation of Flow Directions and accumulations.
    • Full compatibility with 64-bit computers, allowing for faster processing and the ability to process larger datasets than ever before.
  2. Bug fixes
    • DEM contours to feature objects crash in WMS 8.3: 2180
    • Save GSSHA Group Dialog: 2183
    • Multi-Select index map grid cells: 2143
    • converting dem contours to feature objects: 2175
    • Issues with GSSHA Automated Calibration: 2151
    • Error reading GSSHA Stochastic Simulation results: 2147
    • WMS crashes when right clicking on a TIN Tree Item for a TIN that's been deleted: 2141
    • Error building pyramids: 2131
    • DEM File won't read in: 2084
    • Error message when trying to open an image: "The application has failed to start because gmp-vc90-mt.dll was not found": 2075
    • Zoom tool not working in Edit DEM Elevations plot window: 2071
    • The "Select Shapes Tool" in the GIS module should be an active tool but it is inactive.: 2065
    • Changes to GSSHA .cmt file requested by Chuck: 277
    • Allow users to set the GSSHA NUM_INTERP value
    • Sediment interface enhancements: GSSHA
    • Error in GSSHA Calibration: 2156
    • GSSHA calibration output files: 2153
    • Allow editing polygon-selected index map ID's in the properties window: 2060
    • Hydrologic modeling wizard Define project boundary: 2288
    • WMS does not read observed data file: 2248
    • Check while reading parameter and calibration file in GSSHA automated calibration: 2249
    • Add GSSHA Calibration Parameters in WMS: 2247
    • flow vectors don't read in: 2244
    • Save File button not working in Coverage Overlay dialog: 2239
    • Crash when deleting GSSHA model: 2236
    • Report the name of the contaminant when reading the contaminant transport solution: 2235
    • Add option to select whether to export contaminant mass and concentration to GSSHA output control: 2234
    • WMS not writing all lakes to file: 2217
    • Simple dam Break not finding Cross Section: 2215
    • Tutorial change request: 2184
    • Display options: 2366
    • problems numbering Branch: 2332
    • Run GSSHA model button in the Hydrologic modeling wizard not working: 2321
    • Contour Options button not working: 2311
    • Distinguish Data/Model/Solution in GSSHA project explorer. 1) Use a different color scheme, 2) Separate the sections out, and 3) Put a symbol M for models as we have S for solutions
    • If groundwater head and aquifer bottom is available in the model, display the following in the Smooth stream arcs dialog and allow user to edit all of these
    • Add the new Tc method to MODRAT
    • In Hydrologic Modeling wizard, the coordinates for project boundary are not defaulted properly. Dr Nelson thinks it is good idea to default them to 0
    • In the same dialog of the modeling wizard, if you change the project coordinates, it looks like WMS tries to transform the coordinates in the project bound coordinates list also causing WMS to crash
    • While saving GSSHA project, the .cmt file had a soil type index map assigned to several processes even though those processes were not turned on. The processes that were not turned on include evapotranspiration, soil erosion, and possibly others. GSSHA r
    • In GSSHA Job Control/Storm-tile drain Edit parameter button, change the text to "Allow GSSHA to redistribute Superlink Vertices"
    • Super link/ Super Junction numbering is still not working. If you create the superlinks and turn the Storm/Tile Drain option on Job control, the numbering is not correct. Turning the Storm/Tile Drain option on Job control and then creating the arcs seemed
    • In Job Control/Edit parameters for storm/tile drains, put an option to select a method that specifies how water gets into the drains. The default option should be Cook Method (need to make sure if the name is correct) and next option should be Drain Mod M
    • Be able to specify a depression mask for running cleandam so you don’t change areas for specified zones
    • Change the user interface to turn this option on, specify the XY boundary condition files, and specify the larger GSSHA model so the mask can be written to this location
    • Change the user interface to turn this option on for the larger model and to specify the small GSSHA model so the mask can be used in running the simulation.
    • Read and write the project file cards and data files required to implement this option
    • Read and write DEMs as GeoTIFF files
    • Create a display option to display the wetland parameters from the GSSHA polygon attributes dialog if this display option is selected
    • WMS cannot load images after converting DEM to TIN: 2629
    • Severe WMS/Global Mapper bug when converting DEM to TIN: 2627
    • Modrat Wrapper not finishing: 2624
    • Joining SSURGO data bug: 2623
    • When loading the hydrograph solution to HEC-1 WMS Gives an error: 2597
    • WMS crashes when converting DEM to TIN after editing TOPAZ generated streams: 2578
    • WMS crashes when reversing directions of a stream network: 2577
    • The Cross Section Attributes dialog gives bogus help strings: 2566
    • Click on GSSHA Smooth Stream Dialog causes a crash: 2565
    • Add Autocheck for updates to WMS interface
    • Write KMZ file animations as Super-overlays
    • Fixed several MODRAT bugs
    • WMS crashing when loading GIS data: 2436
    • Build Polygons Crash: 2400
    • WMS 8.3 unable to Connect to Sever when selecting from web service: 2389
8.3
  • 2010 Jan - final
  1. Export rainfall datasets to KMZ (Google Earth) animation files
    • Using WMS 8.3 you are able to select the solution dataset, the scattered data dataset, and the rainfall dataset and export all three to a KMZ file. In the film loop dialog, you can specify the display elevation associated with your rainfall dataset, and view rainfall intensity at the same time you are viewing its effects in the overland plane and the river network.
  2. Export index map cells to Google Earth as vector polygons
    • With WMS 8.3 you get a variety of visualizing options. For example, the different index maps that can be created in WMS can now be exported as .kmz files that can be displayed in Google Earth.
  3. Import GSSHA index map files
    • WMS 8.3 allows you to import any index map file, such as Land Use, Soil Type, Combined Index Map, etc. from one GSSHA project to another GSSHA project with the same grid.
  4. Support of Contaminant Transport and NSM modeling in GSSHA
    • WMS 8.3 supports constituent transport modeling, which can be simulated as simple first order reactants or with the full nutrient cycle using NSM. You can input a constituent concentration at any point in your watershed (point and/or non point source) or on a stream and then GSSHA outputs maps of mass and concentrations at each point in your watershed and in your stream network.
    • NSM can be coupled with any hydrologic and hydrodynamic model transport component; this means that NSM deals with transforming processes of water quality constituents in the overland plane and receiving water bodies. Tutorials for each of these capabilities are available on gsshawiki.com.
  5. Ability to create mass and concentration plots for NSM constituents and for simple first order constituents
    • Not only can constituents be visualized in the overland flow plane at any cell in your watershed, but specific plots of constituent mass and concentrations can be generated in the outlet of your watershed using WMS 8.3. This works both for simple first order reactants and for NSM constituents such as nitrogen, phosphorus and carbon species.
  6. Support of Overland flow boundary conditions in GSSHA
    • Using WMS 8.3 you can model coastal storm surges or areas around a standing water body using overland flow boundary conditions, which can be defined as constant slope, constant stage (water surface elevation), or variable stage (water surface elevation). GSSHA will take a map of the boundary conditions and apply that condition at the beginning of each time step.
  7. Improvements on Joining SSURGO Data
    • Using the “Join SSURGO Data” command in WMS 8.3, you can now join more attributes besides those associated with the *.dbf file. Attributes such as hydrologic soil group (HYDGRP), texture, hydraulic conductivity (KSAT), moisture, field capacity (FIELDCAP) and wilting point (WILTINGPT) can now be mapped to the WMS soil coverage.
  8. Improvements on GSSHA Stochastic Model Calibration
    • Besides having the capability of running in calibration mode or batch mode, with WMS 8.3 you can automatically read in and run a model with the calibrated parameters and decide whether or not to substitute them into your model.
  9. Capability to define an input hydrograph and/or contaminant source at any location in the stream network
    • As mentioned previously, WMS 8.3 allows you to specify a contaminant source at any point in your stream network that can account for point-sources in the stream network. In addition, you can define an input hydrograph at any point in your stream network, which can be particularly useful if you want to account for the hydrology of upstream areas into your watershed.
8.2
  • 2009 Mar - beta
  • 2009 Apr - final
  1. Support of calibration and batch mode processes (stochastic modeling) in the GSSHA interface
    • Using WMS 8.2, you can run GSSHA in calibration mode to determine optimum parameters or in batch mode to run using a range of input values.
  2. Improved stream model checker, better stream visualization, stream adjustment to match grid, and improved stream smoothing
    • The hydrologic modeling wizard has been improved in WMS 8.2 to allow for editing stream elevations before creating a 2D grid. When the 2D grid is generated, the grid cell elevations are set to match the stream elevations. Matching up these elevations reduces the chance for errors in running your GSSHA model when stream routing is defined.
  3. Ability to create multiple GSSHA scenarios (multiple GSSHA job controls, sets of index maps, mapping tables, solutions, etc.)
    • Multiple scenarios, such pre-development and post-development conditions, can be defined in a single instance of WMS. Each of these scenarios can be run and the results from each scenario can be compared.
  4. Support of wetlands, sediment transport, and groundwater/surfacewater interaction routines in GSSHA
    • WMS 8.2 contains full support for wetland, sediment transport, and groundwater/surfacewater interaction capabilities in GSSHA. Tutorials for each of these capabilities are available on gsshawiki.com.
  5. Improved ability for defining embankment arcs
    • WMS 8.2 has improved ability for defining embankment arcs and running GSSHA embankment routines that was not available in previous version of WMS.
  6. Support of HEC-RAS 4.0 and sediment transport
    • WMS 8.2 contains support for the latest version of HEC-RAS, version 4.0, which has sediment transport capabilities.
  7. Improved web service client tools
    • WMS 8.2 Includes all types of NED and SRTM elevation data downloads, Terraserver images, and a web catalog that allows you to download any type of data if the data is available. These data sets can be downloaded directly from WMS and from the hydrologic modeling wizard. In WMS 8.2, practically all of the data required for a hydrologic study can be downloaded directly from WMS for any location in the world.
  8. Output animated KMZ files to Google Earth
    • One of the results from running a GSSHA model is water depth at any location of your watershed for any time during your simulation. With WMS 8.2, you can export an animation of the water depth contours and any other parameter that is computed in GSSHA to a file that can be read by Google Earth. This capability is great for presentations of GSSHA model results.
  9. Dataset zonal classification
    • Using WMS 8.2, you can combine datasets such as erosion and deposition to view areas of low erosion and high deposition or high erosion and low deposition based on certain criteria. You can view the results of these queries throughout your watershed.
8.1
  • 2008 Oct - final
  1. Storm water quality and quantity modeling with xpswmm and EPA SWMM interfaces
    • The Storm Water Management Model (SWMM) is a popular model used to simulate the hydrology and hydraulics of storm water runoff. SWMM is primarily used for urban areas, and can be used to model single event or long-term (continuous) simulation of runoff quantity and quality.
    • With WMS 8.1, you can delineate a watershed and then export the delineated watershed boundaries and the WMS-computed watershed data to xpswmm or EPA SWMM.
  2. Spatially Distributed Hydrologic Modeling with GSSHA™
    • New to WMS 8.1 is full support and documentation for the distributed hydrologic model GSSHA™. Several improvements have been made to the GSSHA™ interface in WMS 8.1. The entire process of creating GSSHA™ models and running GSSHA™ models has been streamlined in the Hydrologic Modeling Wizard. The water quality modeling interface and capabilities of GSSHA™ have been significantly improved. Nutrient modeling capabilities have also been improved. Several post-processing features have also been added that allow you to more effectively view water depth along each of the stream channels in the GSSHA™ model. We have added two new tutorials and a new volume (Volume 6) to our list of WMS tutorials that walk you through the process of setting up a basic GSSHA™ model with overland flow and stream routing and using NEXRAD Radar precipitation with your GSSHA™ model. A new web site, gsshawiki.com, has also been launched. This web site contains all the latest GSSHA™ documentation and a wealth of information for GSSHA™ modeling.
  3. HMS gridded rainfall (NEXRAD) support
    • WMS 8.1 supports an exciting new feature that makes it easier to work with quasi-distributed hydrologic models. This feature makes it simple for you to use NEXRAD RADAR rainfall data in XMRG format, such as archived rainfall data from the National Weather Service. This feature allows you to read a set of NEXRAD rainfall grids and compute the Thiessen polygon-based gage weights for each sub-basin and the total precipitation (or a precipitation distribution) for each gage based on the rainfall grids.
    • WMS 8.1 also has features that allow you to convert radar-derived precipitation grids directly to formats that can be used in two different hydrologic models: The quasi-distributed MODClark model, which is part of the HMS interface and the distributed GSSHA™ model.
  4. Improved HMS interface and MODClark modeling support
    • Several improvements have been made to the HMS interface in WMS 8.1.
    • One of the most exciting improvements allows you to define a grid representing an HMS MODClark model at any resolution and compute a Curve Number, rainfall value, and travel time at each cell on the grid. After defining the MODClark model in WMS, you can export the model to HMS and run the MODClark simulation. The powerful MODClark modeling capabilities in WMS are not available in any other software product.
  5. Storm water quality and quantity modeling with xpswmm and EPA SWMM interfaces
    • Besides supporting hydrologic modeling with xpswmm and EPA SWMM, WMS supports hydraulic modeling through the "Storm Drain" coverage and the River module. You can import or draw a conceptual model of your storm drain networks in the storm drain coverage and then convert your conceptual model to a schematic in the River module. From the river module, you can export your storm drain network to xpswmm or EPA SWMM where the model can be run. Using the new WMS feature to export (and import) xpswmm and EPA SWMM files, you can build your model and perform model computations in the familiar and GIS-enabled WMS interface. After building and defining your model in WMS, you can export your model to SWMM and finish your model and view the results in the SWMM interface.
  6. Updated HY-8 7.1 culvert analysis computations and an improved interface
    • WMS 8.1 has an improved interface with the FHWA HY-8 culvert analysis program. Since HY-8 7.1 was developed by Aquaveo (the developers of WMS), we were able to integrate the HY-8 7.1 culvert analysis interface and code directly into WMS. With the new HY-8 Culvert coverage, you can define the location of your culvert and edit the data associated with a culvert. The WMS software developers have also linked the HY-8 culvert coverage with the detention basin calculator, allowing you to route a hydrograph through a culvert and determine the effect of the culvert on the hydrograph. The WMS HY-8 interface offers report generation, energy dissipation structure analysis capabilities, and many other powerful features directly within the WMS interface.
  7. Improved support of FHWA hydraulic modeling tools
    • WMS 8.1 has improved the support of the FHWA hydraulic modeling tools. The channel calculator, weir calculator, and the curb and gutter calculator have all been improved to more effectively coincide with FHWA's HEC 22 computation guidelines.
  8. General Enhancements
  9. Virtual Earth map locator tool
    • The "Get Data From Map" button brings up the WMS Virtual Earth map locator tool. This tool is powered by Microsoft Virtual Earth, and accesses data from the internet to allow you to view maps anywhere in the world. Once you zoom into the region you're interested in modeling, WMS will bring up a web data service client which will allow you to select from several data download options. From this dialog, you can select to download NED (DEM), Land Use, or Microsoft TerraServer aerial imagery and topographic data. The data you select is downloaded and read into WMS. This powerful combination of tools will allow you to streamline your data collection process so much of your data collection can be done within the WMS interface.
  10. Improved web service client tools
    • Along with the virtual earth map locator tools, the web service client capabilities of WMS have been greatly improved. In previous versions of WMS, WMS had difficulties downloading data. Many of these difficulties originate from the web service servers, and WMS cannot improve much on these problems. However, the WMS developers have streamlined our web service client tools to give you feedback on the status of your downloads and to fix several problems that were in previous version of the web service client.
  11. Hydrologic modeling wizard
    • The "Hydrologic Modeling Wizard" button in the Get Data toolbar steps you through the process of building a hydrologic model. This powerful wizard starts by helping you define your project coordinate system and gather your data, then steps you through the process of delineating your watershed and computing the parameters for your hydrologic model. When you are done with the wizard, you will have a hydrologic model that is completed or nearly completed for any of the hydrologic models supported in WMS.
  12. Improved graphics
    • The WMS graphics display speed has been dramatically increased. Previous versions of WMS used a software-based approach to rendering your data, but WMS 8.1 uses your graphics hardware to render your data. Along with this modification, the WMS software developers have added Windows Vista graphics support to WMS 8.1.
  13. A new user-editable WMS "Wiki" online help
    • The WMS software developers have developed the xmswiki.com home page. Instead of the traditional WMS help file, all the help is now available online from the xmswiki.com site. This help site uses the "Mediawiki" engine, which is the same code base used by Wikipedia to run their site. This means that anybody who knows about WMS, including you, can modify a help topic or create a new topic. Be assured that the WMS software developers will monitor changes to the WMS wiki, so the xmswiki.com content will be accurate. But with this powerful online editing tool, the WMS help will be much more comprehensive and up-to-date. The xmswiki.com site also features a Google search engine, bringing the power of Google search to the WMS help pages.
  14. XMDF file I/O
    • The WMS 8.1 file format has been modified to use the XMDF file format as the default format. This format provides for faster WMS file I/O and good WMS file viewing capabilities with the NCSA HDFView editor which can be used to edit any XMDF-formatted file.