User:Dwood1/WMS:Version History

From XMS Wiki
Jump to navigationJump to search



<sms 12.0 never left beta, went to 12.1>

<sms 10.0 might be the oldest one they've got, from 2008>

<use bug fixes pages to get dates>

<go to what's new pages, might also have dates>

<don't do sms 13.2, don't do unreleased ones>

<copy stuff out, format to make sure fits tables>

<some might not have beta releases>

<do not reformat what's new pages and bug fix pages>

<not expected done today, fine if take rest of week>

<don't know how fast it's going to go>

<also want one for wms>

<will need to look at it when it's done to see how it is>

<keep notoc>

<double-check categories to make sure going to the right place, product working on>

<put in links as appropriate>

<get idea of gms page setup, learn how to convert what's new into version history>

<turn items into bolded lists? could be tedious?>

<when finish SMS 10.0 or 13.1, come get him and see how looks in table and go from there, send him link, don't have to wait for him to start meeting>

<don't include images in version history>

<maybe think about adding Model versions released when done with going through all the versions?>

<get rid of text links in third column>

<can't do the grabbing of text like they do for WMS, set up differently>

WMS Version History
Version Date Changes
11.0
  • 2018 Aug - beta
  • 2018 Nov - final
  1. Map Flood Tool
    • A new Map Flood tool was added to automatically offset 100-year floodplain maps to analyze extreme flood scenarios. This option can be used to define a vertical offset from a baseline 100-year FEMA floodplain map. This vertical offset is used with readily available web service data to automatically delineate a new floodplain and determine a new, wider floodplain boundary that accounts for this offset. These modified floodplain maps can be used to determine the impacts of extreme weather and flood scenarios on existing and proposed roadways and other structures.
  2. Floodplain Delineation Improvements
    • The floodplain delineation capabilities in WMS 11.0 have been streamlined and improved. In many cases, the floodplain delineation has been sped up by a factor of 10.
  3. Worldwide Elevation Data
    • Support for Amazon Terrain Tiles has been added to the various Import from Web and Get Data tools in WMS. This service provides high resolution elevation data for the entire world with resolutions as high as 3 meters per pixel.
  4. HEC-RAS Cross Section Database Improvements
    • Better support for managing and editing cross section databases for HEC-RAS modeling has been added. A new dialog that allows WMS users to select, manage, and edit cross sections and cross section databases has been implemented.
  5. Support for Reading, Viewing, and Converting LIDAR Data
    • Improved support for reading, viewing, and converting LIDAR data to other formats to use with your model has been added.
  6. HEC-RAS and HEC-HMS Updates
    • Support has been added for the most recent version of HEC-RAS (5.0.3) and the most recent version of HEC-HMS (4.2.1).
    • The option to import HEC-RAS GIS (*.sdf) files has been sped up and improved.
  7. GSSHA Updates
    • Support has been added for the most recent version of GSSHA (7.12).
  8. LandXML Import/Export
    • Support for reading and writing LandXML files from the hydraulic modeling module for the SWMM, HY12, and EPANET models has been added.
  9. Higher Resolution Icons
    • Higher resolution icons allow the icon size to be changed. This is done in the Preferences dialog under the General tab.
  10. Image Crop Collar Option Removed
    • The Crop Collar command is no longer available for images.
  11. Bugfixes
10.1
  • 2016 Jan - beta
  • 2016 Jun - final
  1. Community Edition
    • If WMS is unlicensed, it runs as a "Community Edition". This version of WMS is the full version of WMS with the following limitations:
    1. Maximum number of sub-basins: 1
    2. Maximum number of GIS layers: 2
    3. Maximum number of map module coverages and attribute grids: 3
    4. Maximum number of terrain data layers (DEMs and TINs): 1
    5. Maximum number of storm drain pipes: 50
    • In addition, 2D scattered data, CAD data, 2D grid data, and 1D open-channel hydraulic data (HECRAS) are not allowed in the community edition. Purchase licenses that enable more layers in each of these modules at http://www.aquaveo.com.
    • The community edition has an interface to HY12 that is completely free of charge. This means HY12 models with more than 50 pipes are supported as long as the other conditions of the community edition are met.
    • The community edition allows reading and viewing Rational, NSS, SWMM, EPANET, and other models that exceed these limits, but WMS does not allow saving changes to models that exceed the limits. This edition also allows building storm drain, water distribution, and sanitary sewer models that meet the above criteria as long as the maximum number of pipes is not exceeded. More information about the features enabled in the community edition of WMS and how to purchase WMS packages can be found on the WMS pricing page.
  2. EPANET Model Support
    • WMS 10.1 adds support for the EPANET model, a widely used water distribution model. Read GIS data files and map their attributes to the EPANET model attributes, or read and edit existing EPANET models.
  3. Improved EPA-SWMM Model Support
    • WMS 10.1 fully supports both sanitary sewer options and storm drain options associated with EPA-SWMM models. Read GIS data files and map their attributes to the EPA-SWMM model attributes, or read and edit existing EPA-SWMM models.
  4. Improved HY12 Model Support
    • HY12 is an Federal Highway Administration (FHWA)-sponsored storm drain and hydrology model developed by Aquaveo. The Community edition of WMS 10.1 includes a completely free interface to HY12. There are four new tutorials that describe how to import and use various types of data into WMS to build an HY12 model.
    • WMS 10.1 includes a simplified interface to HY12 that makes developing an HY12 model much easier than before. The spreadsheet-like interface is similar to the EPA-SWMM and EPANET interfaces and much of the data can be transferred between HY12 and EPA-SWMM so data can be shared between these models.
    • In addition, a tool exists that allows editing link/node elevations in an HY12 model using a profile editor.
  5. Time Series Data Calculator
    • Use the Time Series Calculator in the Time Series Editor program to perform simple mathematical operations using time series data.
  6. GSSHA Model Improvements
    • Several GSSHA model improvements have been made related to better calibration and renumbering streams.
    • Mine Water Balance Model (MWBM) Wizard
    • The MWBM wizard steps through the process of editing and modifying a GSSHA model based on changes to the terrain, land use, pumping stations, embankments, and other parameters in a mine model that is tracking sediment output from the mine.
  7. Bug fixes
10.0
  • 2014 Jun - final
  1. Model Calibration Updates
    • The newest version of GSSHA supports PEST-style automated calibration methods. WMS 10.0 has an interface to these automated calibration methods in GSSHA. WMS 10.0 allows you to have multiple calibration points and allows you to calibrate to observations other than outlet flow values such as depths, snow water equivalent, and other parameters. More information about automated calibration in GSSHA using WMS 10.0 is located here and here.
  2. Depth Varying Overland Flow Roughness
    • The newest version of GSSHA has a mapping table that supports a depth-varying overland flow roughness exponent. This parameter is used in addition to the roughness mapping table. Without the addition of this table, a default exponent of 0.0 is used, which means the roughness does not change with overland flow depth.
  3. Link/Node-Specific Overbank and Backwater Options
    • GSSHA previously had two options that could be defined globally. The first option, the overbank flow option (OVERBANK_FLOW), increases the level of connection between the overland flow and the channel in the 1D hydraulic model by allowing water to spill from the channel back onto the overland flow plane. If the second option, the overland backwater option (OVERLAND_BACKWATER), is turned on, flow from the overland flow model to the channel in the 1D hydraulic model is restricted if the elevation of the water in the channel exceeds the overland cell elevation. This option can now be defined at each of the arcs (links) in your GSSHA model in the GSSHA arc properties dialog. If this option is defined for one of the arcs, the global option is turned off.
  4. Storm and Tile Drain Interface Tools
    • WMS 10.0 contains many new GSSHA storm and tile drain interface tools. A detailed description of all the tools is available here.
  5. New GSSHA Tutorial
    • Several of the GSSHA tutorials have been updated to reflect changes to GSSHA and its interface, especially the storm and tile drain tutorial and the calibration tutorial.
    • Also, a new tutorial has been added to the list of WMS tutorials under the Spatial modeling section. This tutorial describes how to convert an HMS model to a GSSHA model using simple, easy-to-follow steps from the WMS interface.
  6. Support for HMS 4.0
    • WMS 10.0 supports HMS 4.0. This new version of the HMS model is included with the WMS installation.
  7. DSS Grid Parameters
    • The capability of computing several gridded DSS parameters and exporting them to a DSS file for use in HMS has been added to the HMS ModClark interface. In addition, several types HMS grids can be computed and exported with your HMS model. A grid can be defined at any resolution and Green Ampt, SMA, and Curve Number parameters can be computed using land use and soil maps. In addition, snowmelt parameters, evapotranspiration parameters, infiltration parameters, and other hydrologic parameters can be interpolated to your grid from scattered data and then exported to your HMS ModClark model.
  8. New HMS Tutorial
  9. National Streamflow Statistics (NSS) 6.0 Support
    • WMS 10.0 supports NSS version 6.0 with the updated database, which contains all the latest regression equations for the United States as of May 2014.
  10. Sanitary Sewer Modeling Options
    • Sanitary sewer modeling tools have been added to the EPA SWMM interface in WMS. The following tools have been added to the WMS interface that allow you to define sanitary sewer models and read existing sanitary sewer models:
    1. A sanitary sewer coverage.
    2. An option to define diurnal curves and assign curves to nodes/manholes.
    3. An option to import infiltration and domestic flows from ESRI shapefiles and to export these values to EPA SWMM.
    4. An option to import a peaking factor for the domestic flows and export these values to EPA SWMM
    5. An option to import SWMM 5 models with sanitary sewer options and export these models to ESRI shapefiles
  11. SWMM 5.1 Support
    • WMS 10.0 Supports the most recent version of SWMM, version 5.1.
  12. FEMA Flood Maps
    • The capability to read FEMA Flood Maps using web services has been added to WMS 10.0. Options to import both raster flood images and vector floodplain boundary maps are available.
  13. Flood Map Legend
    • The FEMA flood map legend for FEMA flood images downloaded to WMS 10.0 is shown below:
  14. NOAA Atlas 14 Data
    • Getting a precipitation value has never been easier with the option to get NOAA Atlas 14 data for a delineated watershed in WMS. Options are available to get the mean, upper confidence interval value, and lower value for most watersheds delineated within the United States. The button to get NOAA atlas 14 precipitation values data is available for the commonly used watershed models in WMS, including HMS, HEC-1, and GSSHA. Just select the rainfall hyetograph option for any of these models and a button will appear that allows you to get the precipitation from the web.
  15. NCDC Station Wizard
    • The NCDC Station Wizard allows you to view rainfall gage stations surrounding your watershed, analyze the data associated with these stations, and download the rainfall data. When the data is downloaded, WMS creates creates a rain gage coverage and assigns the rainfall data to gages in this coverage. These gages can then be used in the GSSHA, HMS, or HEC-1 hydrologic models. This exciting tool makes it possible to download historic rainfall data for many areas directly from WMS and then use this historic data in your watershed model.
  16. Bug fixes
9.1
  • 2013 Feb - final
  1. Add GIS Data Command
    • The Add GIS Data command in the Get Data toolbar allows a user to read many formats of vector and raster GIS data. After reading the data, it can be viewed or converted to a format that can be used for hydrologic modeling in WMS.
  2. Raster Display Options
    • If there is raster elevation data read using the Add GIS Data command or if there is online data that contains raster elevations, there are various options for displaying hill shading on the raster data. A user can also convert any raster elevation data to a DEM.
  3. GIS Vector Data Conversions
    • GIS Vector Data can be converted to a shapefile. Once the GIS data is converted to a shapefile, it can be used in any of the hydrologic modeling computations for tasks like computing curve numbers and infiltration coefficients.
  4. Raster Data Conversions
    • Raster data with information about land use or soil type can be converted to a land use or soil type grid by right-clicking on the layer. USGS NLCD and European CORINE Land use data can also be downloaded for anywhere in the United States and Europe using the Get Data tool. More information about the new data sources available in WMS 9.1 can be viewed here.
    • WMS DEMs can be exported to several digital elevation file formats, including the following:
      • GeoTiff
      • BIL
      • ERDAS Imaging IMG
      • Surfer ASCII Grid
      • Surfer Binary Grid
      • USGS ASCII DEM
      • XYZ ASCII Grid
      • ArcInfo ASCII Grid
      • DXF 3D Point
      • Float/Grid
      • DTED
      • MapInfo Grid
      • GlobalMapper Grid
      • Windsim GWS
    • All these files as well as many other formats can also be imported using the Add GIS Data button.
  5. Vector/Shapefile Data Conversions
    • Vector GIS data that is read into WMS can be converted to a shapefile and used in WMS or saved to one of the many other supported formats. The supported formats include:
      • DXF Files (*.dxf)
      • Area Shapefiles (*.shp)
      • Line Shapefiles (*.shp)
      • Point Shapefiles (*.shp)
      • Google Earth KMZ Files (*.kmz)
      • MapInfo MIF/MID Files (*.mif)
      • MapInfo TAB/MAP Files (*.map)
      • Simple ASCII Text Files (*.txt)
      • CSV (Comma-separated value) Files (*.csv)
      • SVG Files (*.svg)
  6. GIS Module
    • All images, raster GIS data, and vector GIS data are now stored in the GIS module. In the GIS module, a user can import, export, and convert GIS data to different formats. A user can also map data in the GIS module to data in WMS that can be used to build the watershed models.
  7. TIN Elevations from LandXML Files
    • WMS 9.1 allows the user to read LandXML files as a TIN. This command to import LandXML files preserves the points and the triangle connections that were built in the CAD program that was used to generate the LandXML file.
  8. DGN, DWG, and other CAD File Support
    • WMS 9.1 supports most of the latest DGN, DWG, and DXF file formats through the Teigha library. Currently, WMS 9.1 uses version 3.05.01 of the Teigha library.
  9. Multiple DEMs
    • WMS 9.1 allows the user to read and manage multiple DEMs in the project explorer. Each of these DEMs can have flow directions and accumulations for watershed delineation. A user can clip and modify single DEMs or merge multiple DEMs from different sources into a single DEM. A user can convert raster elevation data in the GIS module to DEMs. These DEMs can be merged and exported to any of the raster elevation formats supported by WMS.
  10. Improved Web Service (Online Data) Tools
    • WMS 9.1 has three tools for obtaining online data: The Get Data tool, the Get Data From Map command, and the Get Online Maps command. All of these tools can be used to obtain various types of raster data: Images, elevation data, land use data, vegetation data, and more.
  11. Get Data
    • The Get Data tool and the Get Data From Map command work in much the same way. The user needs to set the current projection before using either of these tools. The difference is that with the Get Data tool, the user selects the area where data is desired from the WMS window. With the Get Data From Map command, the user selects the area from the Virtual Earth Map Locator window. This Virtual Earth window pops up after selecting the Get Data From Map command. In either case, the user goes to the area of interested and WMS will bring up another window that allows the user to select the type of data to be downloaded. With all the raster data sources, specify a resolution of the data to be downloaded and WMS will download the data.
    • Several new data sources have been added to the Get Data tools in WMS, including various sources for high-quality imagery. Samples of many of the data sources are shown in the new Get Data dialog.
  12. Get Online Maps
    • The Get Online Maps command allows a user to define online data sources to be added to the display. This command was introduced in WMS 9.0, and has been improved in WMS 9.1. WMS 9.1 launches a separate process to download the online data when it is downloading so the user no longer needs to wait for the data to download before working. WMS 9.1 also has tools to convert online data to static data and to convert it to various formats that can be used for watershed modeling.
  13. Texture Mapping on TINs
    • The capability to texture map images to TINs has been added. This capability allows a user to read or download an image using the Get Data tools and then texture map the image on a TIN. This gives the option to create a nice image of the watershed model and to visualize the locations and terrain surrounding hydraulic structures in the watershed. A user can also use the texture mapping capabilities to view flood locations and contours from a HEC-RAS analysis.
  14. GSSHA Snowmelt
    • Several options to support the GSSHA snowmelt models have been added to the WMS interface. When running long-term GSSHA simulations, the GSSHA snowmelt parameters can be modified in the easy-to-use WMS interface. WMS 9.1 also has options to define raster HMET files for use in GSSHA long term simulations.
  15. HEC-RAS Water Surface Elevations
    • If there is an existing HEC-RAS model and the user wants to bring it into WMS, there has not previously been a way to read the water surface elevations from the HEC-RAS solution. Now if the user exports the water surface elevations with the GIS file that's exported from HEC-RAS, WMS reads these water elevations.
  16. SWMM Attributes
    • If the correct attributes have been assigned to arcs in a shapefile, WMS now imports storm drain attributes such as names, shapes, diameters, lengths, and upstream and downstream invert elevations to the SWMM model in WMS. This makes the SWMM modeling easier because the user doesn't have to re-enter the pipe attributes that are already defined in a shapefile.
  17. Bug fixes
9.0
  • 2012 Jan - beta
  • 2012 Oct - final
  1. Updated Interfaces
    • The NSS (National Streamflow Statistics) interface has been updated to use the latest NSS database. The MODRAT interface has also been updated. Renumbering has been improved in the MODRAT interface and several issues have been fixed. Several new features and enhancements have been added to the GSSHA interface. First, the storm and tile drain modeling capability of GSSHA has been improved by adding the capability to add multiple pipes in a "superlink", which represents a network of pipes in GSSHA. The algorithm for determining embankments has also been reworked to make the algorithm more efficient and more accurate. The GSSHA tutorials have also been updated and improved to include the latest enhancements in the GSSHA code. Also, GSSHA itself has been reworked to make the program more stable.
  2. FHWA HY-12 Storm Drain Modeling
    • WMS now includes an interface to FHWA's HY-12 storm drain modeling program. This interface allows you to create a storm drain layout and assign rational method computations, curbs and gutters, access holes, pipes, channels, and other storm drain network features to the storm drain layout. Much of the data can be computed automatically using the interface, and other data values can be entered in the easy-to-use windows. The other storm drain modeling interfaces, including the SWMM and xp-swmm interfaces, have also been upgraded to make your model easier to build and maintain.
  3. Online Image (Web Map Service) Capabilities
    • One of the most exciting new features in WMS is the Get Online Maps tool in the Get Data Toolbar. This tool allows you to open a web map service as an "online image" and use it as you would any other image in the WMS interface. Since the web can be a little slow, there is an option to convert the online image to a static (locally saved) image that is saved with your WMS project and that displays much faster than the online image.
  4. Improved Web Service Tools
    • Six new web services have been added to the list of web data that can be downloaded from the WMS Get Data Toolbar. These web services include some that were previously available, such as United States National Elevation Datasets, as well as newly available datasets, such as the CORINE European land cover database, the NLCD US National Land Cover database, and the ASTER Worldwide Elevation Data database. These new datasets are much faster than previously available datasets and include a progress bar so you can view the progress of your data download.
  5. Support of New File Formats
    • We have added support for almost all the commonly used vector file formats in the new version of WMS. Some vector files, such as DXF, DWG, and ESRI Shapefile format, still read the way they have always read into WMS. But support for "Vector-based images" has been added to WMS that allows you to read any file that can be read using the Global Mapper software in WMS (A license to Global Mapper is not required). For a complete listing of the vector formats supported in WMS, visit the Global Mapper web site. Right-clicking on a vector image allows you to export to one of many formats or convert linear data to feature objects or scattered data (XYZ). The following formats can be exported using the right-click command:
      • DXF Files (*.dxf)
      • Area Shapefiles (*.shp)
      • Line Shapefiles (*.shp)
      • Point Shapefiles (*.shp)
      • Google Earth KMZ Files (*.kmz)
      • MapInfo MIF/MID Files (*.mif)
      • MapInfo TAB/MAP Files (*.map)
      • Simple ASCII Text Files (*.txt)
      • CSV (Comma-separated value) Files (*.csv)
      • SVG Files (*.svg)
  6. FHWA HY-8 7.3 and Hydraulic Toolbox 3.0 Support
    • The FHWA's HY-8 7.3, which includes many new culvert modeling capabilities, is supported in the new version of WMS. The new version of the FHWA's Hydraulic Toolbox (3.0) is also supported with the new version of WMS. The new tools in HY-8 7.3 include modeling of hydraulic jump profiles, broken back culverts (culverts with a change in slope), and horizontal and adverse slopes in culverts. Documentation showing the capabilities included in the latest version of HY-8 is included on the HY-8 wiki. The newest version of the hydraulic toolbox includes tools for culvert assessment and for determining a riprap or streambed gradation curve using a digital image.
  7. Bug fixes
8.4
  • 2011 Feb - final
  1. What's new in WMS 8.4
    • Updated to be compatible with the latest version of GSSHA. New tutorials are available for use with WMS.
    • Integration with FHWA's HY-8 and Hydraulic Toolbox software.
    • HY-8 modeling wizard: Allows you to design or analyze culverts using the linkage between WMS, HY-8, and the Hydraulic Toolbox.
    • Integration of the Time Series Editor with WMS. This tool allows you to find and download data from the internet and to modify existing time series data.
    • New method of computing Flow Directions/Accumulations for basin delineation using TauDEM, allowing for multiprocessor computation of Flow Directions and accumulations.
    • Full compatibility with 64-bit computers, allowing for faster processing and the ability to process larger datasets than ever before.
  2. Bug fixes
    • DEM contours to feature objects crash in WMS 8.3: 2180
    • Save GSSHA Group Dialog: 2183
    • Multi-Select index map grid cells: 2143
    • converting dem contours to feature objects: 2175
    • Issues with GSSHA Automated Calibration: 2151
    • Error reading GSSHA Stochastic Simulation results: 2147
    • WMS crashes when right clicking on a TIN Tree Item for a TIN that's been deleted: 2141
    • Error building pyramids: 2131
    • DEM File won't read in: 2084
    • Error message when trying to open an image: "The application has failed to start because gmp-vc90-mt.dll was not found": 2075
    • Zoom tool not working in Edit DEM Elevations plot window: 2071
    • The "Select Shapes Tool" in the GIS module should be an active tool but it is inactive.: 2065
    • Changes to GSSHA .cmt file requested by Chuck: 277
    • Allow users to set the GSSHA NUM_INTERP value
    • Sediment interface enhancements: GSSHA
    • Error in GSSHA Calibration: 2156
    • GSSHA calibration output files: 2153
    • Allow editing polygon-selected index map ID's in the properties window: 2060
    • Hydrologic modeling wizard Define project boundary: 2288
    • WMS does not read observed data file: 2248
    • Check while reading parameter and calibration file in GSSHA automated calibration: 2249
    • Add GSSHA Calibration Parameters in WMS: 2247
    • flow vectors don't read in: 2244
    • Save File button not working in Coverage Overlay dialog: 2239
    • Crash when deleting GSSHA model: 2236
    • Report the name of the contaminant when reading the contaminant transport solution: 2235
    • Add option to select whether to export contaminant mass and concentration to GSSHA output control: 2234
    • WMS not writing all lakes to file: 2217
    • Simple dam Break not finding Cross Section: 2215
    • Tutorial change request: 2184
    • Display options: 2366
    • problems numbering Branch: 2332
    • Run GSSHA model button in the Hydrologic modeling wizard not working: 2321
    • Contour Options button not working: 2311
    • Distinguish Data/Model/Solution in GSSHA project explorer. 1) Use a different color scheme, 2) Separate the sections out, and 3) Put a symbol M for models as we have S for solutions
    • If groundwater head and aquifer bottom is available in the model, display the following in the Smooth stream arcs dialog and allow user to edit all of these
    • Add the new Tc method to MODRAT
    • In Hydrologic Modeling wizard, the coordinates for project boundary are not defaulted properly. Dr Nelson thinks it is good idea to default them to 0
    • In the same dialog of the modeling wizard, if you change the project coordinates, it looks like WMS tries to transform the coordinates in the project bound coordinates list also causing WMS to crash
    • While saving GSSHA project, the .cmt file had a soil type index map assigned to several processes even though those processes were not turned on. The processes that were not turned on include evapotranspiration, soil erosion, and possibly others. GSSHA r
    • In GSSHA Job Control/Storm-tile drain Edit parameter button, change the text to "Allow GSSHA to redistribute Superlink Vertices"
    • Super link/ Super Junction numbering is still not working. If you create the superlinks and turn the Storm/Tile Drain option on Job control, the numbering is not correct. Turning the Storm/Tile Drain option on Job control and then creating the arcs seemed
    • In Job Control/Edit parameters for storm/tile drains, put an option to select a method that specifies how water gets into the drains. The default option should be Cook Method (need to make sure if the name is correct) and next option should be Drain Mod M
    • Be able to specify a depression mask for running cleandam so you don’t change areas for specified zones
    • Change the user interface to turn this option on, specify the XY boundary condition files, and specify the larger GSSHA model so the mask can be written to this location
    • Change the user interface to turn this option on for the larger model and to specify the small GSSHA model so the mask can be used in running the simulation.
    • Read and write the project file cards and data files required to implement this option
    • Read and write DEMs as GeoTIFF files
    • Create a display option to display the wetland parameters from the GSSHA polygon attributes dialog if this display option is selected
    • WMS cannot load images after converting DEM to TIN: 2629
    • Severe WMS/Global Mapper bug when converting DEM to TIN: 2627
    • Modrat Wrapper not finishing: 2624
    • Joining SSURGO data bug: 2623
    • When loading the hydrograph solution to HEC-1 WMS Gives an error: 2597
    • WMS crashes when converting DEM to TIN after editing TOPAZ generated streams: 2578
    • WMS crashes when reversing directions of a stream network: 2577
    • The Cross Section Attributes dialog gives bogus help strings: 2566
    • Click on GSSHA Smooth Stream Dialog causes a crash: 2565
    • Add Autocheck for updates to WMS interface
    • Write KMZ file animations as Super-overlays
    • Fixed several MODRAT bugs
    • WMS crashing when loading GIS data: 2436
    • Build Polygons Crash: 2400
    • WMS 8.3 unable to Connect to Sever when selecting from web service: 2389
8.3
  • 2010 Jan - final
  1. Export rainfall datasets to KMZ (Google Earth) animation files
    • Using WMS 8.3 you are able to select the solution dataset, the scattered data dataset, and the rainfall dataset and export all three to a KMZ file. In the film loop dialog, you can specify the display elevation associated with your rainfall dataset, and view rainfall intensity at the same time you are viewing its effects in the overland plane and the river network.
  2. Export index map cells to Google Earth as vector polygons
    • With WMS 8.3 you get a variety of visualizing options. For example, the different index maps that can be created in WMS can now be exported as .kmz files that can be displayed in Google Earth.
  3. Import GSSHA index map files
    • WMS 8.3 allows you to import any index map file, such as Land Use, Soil Type, Combined Index Map, etc. from one GSSHA project to another GSSHA project with the same grid.
  4. Support of Contaminant Transport and NSM modeling in GSSHA
    • WMS 8.3 supports constituent transport modeling, which can be simulated as simple first order reactants or with the full nutrient cycle using NSM. You can input a constituent concentration at any point in your watershed (point and/or non point source) or on a stream and then GSSHA outputs maps of mass and concentrations at each point in your watershed and in your stream network.
    • NSM can be coupled with any hydrologic and hydrodynamic model transport component; this means that NSM deals with transforming processes of water quality constituents in the overland plane and receiving water bodies. Tutorials for each of these capabilities are available on gsshawiki.com.
  5. Ability to create mass and concentration plots for NSM constituents and for simple first order constituents
    • Not only can constituents be visualized in the overland flow plane at any cell in your watershed, but specific plots of constituent mass and concentrations can be generated in the outlet of your watershed using WMS 8.3. This works both for simple first order reactants and for NSM constituents such as nitrogen, phosphorus and carbon species.
  6. Support of Overland flow boundary conditions in GSSHA
    • Using WMS 8.3 you can model coastal storm surges or areas around a standing water body using overland flow boundary conditions, which can be defined as constant slope, constant stage (water surface elevation), or variable stage (water surface elevation). GSSHA will take a map of the boundary conditions and apply that condition at the beginning of each time step.
  7. Improvements on Joining SSURGO Data
    • Using the “Join SSURGO Data” command in WMS 8.3, you can now join more attributes besides those associated with the *.dbf file. Attributes such as hydrologic soil group (HYDGRP), texture, hydraulic conductivity (KSAT), moisture, field capacity (FIELDCAP) and wilting point (WILTINGPT) can now be mapped to the WMS soil coverage.
  8. Improvements on GSSHA Stochastic Model Calibration
    • Besides having the capability of running in calibration mode or batch mode, with WMS 8.3 you can automatically read in and run a model with the calibrated parameters and decide whether or not to substitute them into your model.
  9. Capability to define an input hydrograph and/or contaminant source at any location in the stream network
    • As mentioned previously, WMS 8.3 allows you to specify a contaminant source at any point in your stream network that can account for point-sources in the stream network. In addition, you can define an input hydrograph at any point in your stream network, which can be particularly useful if you want to account for the hydrology of upstream areas into your watershed.
8.2
  • 2009 Mar - beta
  • 2009 Apr - final
  1. Support of calibration and batch mode processes (stochastic modeling) in the GSSHA interface
    • Using WMS 8.2, you can run GSSHA in calibration mode to determine optimum parameters or in batch mode to run using a range of input values.
  2. Improved stream model checker, better stream visualization, stream adjustment to match grid, and improved stream smoothing
    • The hydrologic modeling wizard has been improved in WMS 8.2 to allow for editing stream elevations before creating a 2D grid. When the 2D grid is generated, the grid cell elevations are set to match the stream elevations. Matching up these elevations reduces the chance for errors in running your GSSHA model when stream routing is defined.
  3. Ability to create multiple GSSHA scenarios (multiple GSSHA job controls, sets of index maps, mapping tables, solutions, etc.)
    • Multiple scenarios, such pre-development and post-development conditions, can be defined in a single instance of WMS. Each of these scenarios can be run and the results from each scenario can be compared.
  4. Support of wetlands, sediment transport, and groundwater/surfacewater interaction routines in GSSHA
    • WMS 8.2 contains full support for wetland, sediment transport, and groundwater/surfacewater interaction capabilities in GSSHA. Tutorials for each of these capabilities are available on gsshawiki.com.
  5. Improved ability for defining embankment arcs
    • WMS 8.2 has improved ability for defining embankment arcs and running GSSHA embankment routines that was not available in previous version of WMS.
  6. Support of HEC-RAS 4.0 and sediment transport
    • WMS 8.2 contains support for the latest version of HEC-RAS, version 4.0, which has sediment transport capabilities.
  7. Improved web service client tools
    • WMS 8.2 Includes all types of NED and SRTM elevation data downloads, Terraserver images, and a web catalog that allows you to download any type of data if the data is available. These data sets can be downloaded directly from WMS and from the hydrologic modeling wizard. In WMS 8.2, practically all of the data required for a hydrologic study can be downloaded directly from WMS for any location in the world.
  8. Output animated KMZ files to Google Earth
    • One of the results from running a GSSHA model is water depth at any location of your watershed for any time during your simulation. With WMS 8.2, you can export an animation of the water depth contours and any other parameter that is computed in GSSHA to a file that can be read by Google Earth. This capability is great for presentations of GSSHA model results.
  9. Dataset zonal classification
    • Using WMS 8.2, you can combine datasets such as erosion and deposition to view areas of low erosion and high deposition or high erosion and low deposition based on certain criteria. You can view the results of these queries throughout your watershed.
11.0
  • 2011 Dec - beta
  • 2012 Nov - final
  1. New Module – Raster Module
    • You can now work with raster data (DEM) in SMS without needing to convert the data into a scatterset (TIN). Raster formats are more space efficient and quicker to draw than TIN based formats with the same number of points. This allows you to work with larger DEMs than previously possible within SMS.
    • Rasters can be used to interpolate elevations to a scatter, mesh, or grid. You can create observation profile plots of raster data to see cross-section views of raster data.
  2. Planetary Boundary Layer (PBL)
    • The PBL model is used to compute wind fields from tropical storms and hurricanes. The PBL engine is developed and maintained by Oceanweather Inc., experts in wind forecasting and hind casting. The PBL model takes an input storm track and outputs wind fields that can be used to force an ADCIRC model. Currently, distribution of the model itself is controlled by OWI. Negotiations to use the model, or get output files from the model, which can then be used in SMS as part of CSTORM or ADCIRC model runs, must go through OWI.
  3. Adaptive Hydraulics (AdH)
    • The 2D shallow water component of the ADaptive Hydraulics Modeling system (AdH) now has an interface within SMS. AdH was developed by the Coastal and Hydraulics Laboratory, ERDC, USACE (www.chl.erdc.usace.army.mil). AdH solves the 2D shallow water equations, features an adaptive mesh solution to dynamically alter the resolution of the mesh based upon where it is needed, supports wetting and drying, boat effects, and wind effects. See the AdH website for more information on AdH (https://adh.usace.army.mil/).
    • Note: The sediment and AD transport portions of AdH are not currently supported in the SMS interface.
  4. WAM
    • The global ocean WAve prediction Model called WAM is a third generation wave model. WAM predicts directional spectra as well as wave properties such as significant wave height, mean wave direction and frequency, swell wave height and mean direction, and wind stress fields corrected by including the wave induced stress and the drag coeffieient at each grid point at chosen output times. (http://chl.erdc.usace.army.mil/chl.aspx?p=s&a=software;8)
    • The WAM interface in SMS supports building WAM grids, creating WAM simulations, nesting WAM grids, post-processing support (contours and spectra), and generating spectra for STWAVE input (requires the STWAVE interface).
  5. Bouss2D Runup/Overtopping
    • It is now possible to run Bouss2D in 1D mode to simulate run-up and overtopping. The runup/overtopping interface supports the ability to extract transects, position gages, specify roughness zones (Chezy or Manning), and define multiple wave cases. Post-processing includes 2D profile plots along transects, time-series plots of gage output, generated summary statistics such as height of highest 1/10, 1/50 of waves, and the point of furthest encroachment on each transect.
  6. TUFLOW Advection/Diffusion Module
    • There is a new Advection/Diffusion (AD) module for TUFLOW. TUFLOW AD simulates depth-averaged, two and one-dimensional constituent fate and transport. Both dissolved and particulate constituents can be simulated. TUFLOW AD adaptively expands its computational stencil (between third to ninth order) in areas where strong constituent gradients are identified. The module is fully supported within SMS including the ability to support spatially varied initial concentrations and transport coefficients.
  7. Generic Model New Features
    • We have added several features to the generic model interface to offer more options for providing a user-interface for models without a custom SMS interface.
    • Now boundary condition and material parameters can now support more than just a floating point or curve value. Each parameter can be enumerated options, boolean, integer, float, curve, text, or float/curve (user chooses which).
    • Now multiple boundary conditions can be assigned to the same entity (node, nodestring or elements). This is particularly handy if you have bc information for multiple solution types (flow and sediment transport).
    • The generic model designer can show/hide parameters based upon an enumerated option parameter. For example, the user could choose between chezy and manning roughness approaches and show the appropriate parameters depending upon the choice. Boundary condition and Material properties can use global parameters or their own parameters to base the hide/show logic.
    • The designer can also choose to have multiple material groups (roughness/sediment).
    • In order to accomplish the features above and make parameters as consistent as possible, some existing card definitions have changed. This will necessity changes for models using the generic model interface and migrating from SMS 10.1 to 1.0.0.
  8. CMS Updates
    • CMS Flow now supports the ability to run a coupled CMS Flow/CMS Wave model without the use of the steering module (inlined). Running the models inlined minimizes the file IO for the models decreasing runtimes.
    • CMS Flow also supports an optional Implicit solution scheme allows for longer time-step sizes and parallel runs so you can distribute your work across all of your processor cores. The option to change which mode (2D or 3D) CMS Flow runs in has been removed. By default, CMS Flow will run in 2D.
    • CMS Wave has several new features including the ability to define a muddy bed, non-linear wave effects, infragravity wave effects, spatially varied wind field, xmdf output, and a Gauss-seidel solution scheme that allows you to run across multiple processor cores.
  9. TUFLOW Updates
    • You can now import projects created outside of SMS. Multiple TCF files can be read together to maintain sharing of objects where supported by SMS. Makes it easy for someone familiar with SMS to pick up on a model started by someone else or to help transition to using TUFLOW within SMS.
    • You can now choose to output datasets in XMDF format which is much faster (basically instant) for loading datasets into SMS. You can also add custom text to the output options to choose items not supported by SMS.
    • You can now create, manage, and use irregular culverts from inside the SMS interface.
    • You can now choose to have SMS write zpts to a new xf file format that is binary and very fast to read/write.
    • Includes manhole support for the new TUFLOW manhole features. You can specify options for the automatically generated manholes and override these settings using a TUFLOW manhole coverage.
    • You can now select grid cell locations (9 cell locations used by TUFLOW) using the “Feature objects->Select/Delete Data” command.
  10. Cartesian grids store their own projection and reproject on the fly
    • You can now have a projection associated with each of your cartesian grids. The grid will be reprojected on the fly into the working projection for display purposes. You can right-click on the grid and choose “Work in grid projection” to easily change your working projection to the grid’s projection which is required for working with the grid and using tools.
    • Note: Bouss2D and CMS-Wave do not currently have the ability to save this projection information.
  11. STWAVE Updates
    • We are now linked to STWAVE version 6 which has new file formats and improvements made by the model developers. You can now extract boundary conditions from a larger WAM run and have improved iteration control for the full-plane version. The new interface/model allows you to specify names for your boundary condition cases.
  12. Improved Crash Reports
    • The crash reports from SMS now contain more information often enough for our developers to fix the issue without any user interaction. Please allow SMS to post this information so our developers can fix issues that arise.
  13. Dynamic background images from the web through ArcGIS
    • If you have ArcGIS on your computer, you can use the GIS module within SMS to get background imagery that updates on the fly from the internet.
  14. Particle module/PTM changes
    • Particle sets can have a projection defined and are reprojected on the fly.
    • You can estimate the number of particles that will be generated in by a PTM source coverage. This helps ensure you don’t accidentally generate so many particles that the computations take to long.
    • Virtual gages - You can use virtual gages to determine concentrations and other data around a point or within a polygon.
    • Particle filters - You can use particle filters to display a subset of particles to use for display, selection and compute grid datasets. You can use this to look at particles from particular sources, etc.
  15. Bouss2D changes
    • You can now have variable roughness defined by map polygons for a Bouss2D simulation
  16. GenCade changes
    • Wave gage event wave directions can now be specified in conventions other than shore normal, such as meteorological and oceanographic.
    • Left and right bypass coefficients can be specified for inlets. The Y Left and Y Right have been removed and replaced by the left and right bypass coefficients.
  17. General Features
    • If you do File | Save as and choose an image file, SMS writes an associated world and projection file
    • You can change the symbol size used in plots
    • You can convert mesh elements to polygons using Mesh→Map. This makes it possible to get your mesh elements into a shapefile
    • SMS now uses the existing background for flowtrace and drogue plots rather than have this specified separately
    • Zoom to options to easily see specific information including: zoom to mesh, grid, scatter, and selections
    • Option to always use white when printing rather than current background color
    • You can now import TINs from LandXML files
    • Find/select map points, arcs, and polygons by id (use zoom to selection to find in busy coverages)
10.1
  • 2009 Oct - beta
  • 2011 Jan - final
  1. 64-bit Version
    • SMS now distributes a 64-bit version. This version can access far more memory than the 32-bit version can so it is useful for working with large sets of data. The installation is the same for the 32 and 64 bit versions of SMS. You can choose the version to install if you have a 64-bit operating system. Both versions can be installed by running the installation twice. The performance (speed) of this version is basically the same as the 32-bit version. This version requires a 64-bit operating system (Vista-64 bit recommended).
  2. General Features
    • Dataset Toolbox – New dataset toolbox has new methods to create datasets as well as organizing some of the existing options. The new features include: creating comparison datasets, sampling datasets at specific times, computing derivatives or changes through time, and filtering datasets.
    • Annotations – New annotation tools allow the creation of scale bars, North Arrows, screen space images for Logos, as well as rectangles, ovals, and lines in either screen or world space.
    • Data Calculator – The data calculator now includes functions to take the average, minimum, or maximum of all the time steps of a dataset and is included in the dataset toolbox.
    • KMZ Filmloop Export – In addition to saving raster or vector data from SMS, you can now create animations that can be opened in Google Earth.
    • Graphical Selection Tools – The modifier keys for graphical selection tools have been expanded and made consistent.
    • Projections – SMS now includes many more GIS projection systems (previously referred to as Coordinate Systems) and can use projection (prj) files associated with images and GIS files. SMS can also create projection files.
    • Image Projection Changes – Images now store their native projection and will automatically be displayed in the working projection.
    • Measure Tool – SMS now includes a simple tool for measuring distances.
    • Web Menu - New menu for accessing importing data from the web.
    • Model Priority – There is a new preference that allows the user to specify the priority to launch numeric models.
    • Vector Display Options – Vectors can now have their center or tip positions at the node or grid location being drawn at. This can be useful to prevent vector arrows to appear on land.
    • Stick Plots – Vectors can now be displayed on specified points from a map coverage at points or along vertices on an arc. This can be useful for comparing data obtained along a transect.
    • Save As Image – You can now save the contents of the graphics window to a jpeg or bitmap by doing a file save as and changing the save type.
    • Remote desktop – In SMS 10.0, the screen would go blank if you started a remote session to look at an already running instance of SMS. This has been resolved.
    • Edge Swap – You can now set a general preference to turn on/off automatic refreshing after an edge swap.
  3. Cartesian Grid Module
    • Interpolate Bathymetry to cells – You can now interpolate new bathymetry to the selected cells in a Cartesian grid without updating the entire grid.
    • Smoothing – The smoothing options for a cartesian grid have been expanded to allow smoothing only on a portion of the grid.
    • Duplicate Grid – You can duplicate an entire cartesian grid to create a second simulation that can be changed without altering the initial simulation.
    • Cartesian Grid mapping – Map to grid attributes are now stored with the grid frames so it is easy to go back and create new grids with modified parameters (such as cell size).
    • Transformed Cartesian Grid – You can transform an STWAVE or CMS-WAVE grid to realign it to the directions of the waves.
    • Steering Module – The steering module now allows you to choose the grids to use when multiple cartesian grids exist.
  4. Map Module
    • Animating profile plots now supports multiple datasets – (before only the active dataset could be animated)
    • Observation Profile Plot – Profile plots now have the ability to plot multiple time steps on a single plot.
    • Feature Stamping – Feature stamps now automatically create breaklines appropriately when stamping to a scatter set (TIN).
    • Spatial Data Coverage – New coverage type can be used to display compass plots at locations (such as wind velocities/directions).
  5. Scatter Module (TINs)
    • Scatter Breaklines – SMS now supports breaklines on scatter sets. Breaklines can be manually created, created from converting Map data (CAD or GIS to Map then scatter), created automatically when using feature stamping, or can be imported using the import wizard.
    • Merge Scatter Sets – Merging scattersets can now preserve triangulation of initial scattersets where the scattersets to merge do not overlap.
    • CAD/GIS faces to triangles – AutoCAD or ESRI 3D shapefiles with polygons representing faces can be converted directly to scatter triangles. This makes it easy to get AutoCAD or ESRI TIN data (export DWG/DXF or 3D Shapefile format) into SMS without having to retriangulate and fix the triangulation.
    • Process Boundary Triangles – This new tool can be used to remove unwanted boundary triangles converted on the edge of the domain.
    • Move Scatter Vertices – You can now unlock the scatter set using the vertex menu and move scatter vertices.
    • File Import Wizard Additions for breaklines – Breaklines can be imported using the import wizard.
  6. CMS
  7. Generic Mesh Model
    • 2D Mesh Files (*.2dm) – The generic model interface can now export full curves rather than sampling the curves based upon the time step value.
  8. STWAVE Model
    • STWAVE Time Support – You can now reference input spectra to specific time values or have each spectra independent of time.
  9. TABS Model
    • RMA4 Element Loading – You can now add a mass loading directly to individual elements for an RMA4 advection/dispersion simulation.
  10. TUFLOW
    • TUFLOW ZShape – New coverage type used to modify geometry. It is similar to the geometry modification coverage but has more options including the ability to have the geometry vary with time.
    • TUFLOW 2D Flow Constriction Shape coverage – New coverage type used to create 2D structures. These structure can be layered flow constrictions which allow flows both below and above a bridge deck.
    • TUFLOW Inlet Database – For urban storm drain models, you can provide curves that describe the amount of flow captured by storm drain inlets based upon the depth of flow in the 2D cells rather than the shape options previously available.
    • TUFLOW Network Node SX Additions – 1D nodes can be directly connected to a 2D domain without the need for SX lines or a connection coverage.
    • TUFLOW Eddy Viscosity Options – The eddy viscosity used in the model can now be specified as a combination of a fixed eddy viscosity added to a computed smagorinsky viscosity value.
  11. Features No Longer Supported
    • The models HECRAS and GENESIS are no longer supported in SMS. Our sister program WMS has an interface for HEC-RAS for those who are interested.
    • The RMA4 interface no longer supports BOD/DO since this functionality does not function correctly in RMA4.
10.0
  • 2008 Feb - beta
  • 2009 Feb - final
  1. General New Features
    • Vista Support – Text rendered in earlier versions of SMS did not display correctly when run under Windows Vista. This has been fixed in SMS 10.0.
    • Graphics Improvements – The display pipeline has been completely overhauled in order to support hardware acceleration and reduce memory usage. In addition fill behind labels and aligning automatic contour labels with linear contours now work.
    • Improved DWG Support – SMS 10.0 now supports AutoCAD files up to and including version 2008. In addition, AutoCAD files are displayed in 3D rather than 2D background data as in SMS 9.2.
    • KMZ File Export – SMS can now export the currently displayed image as a raster with geo-referencing in a *.kmz file. Kmz files can be visualized inside of Google Earth.
    • Import Data From Web – When importing data from Terraserver, SMS brings up a locator tool where you can locate the area to download using Microsoft Virtual Earth.
    • Arc Groups in Profile Plots – When observation arcs are joined into arc groups, profile plots will join the data end to end rather than seeing separate curves. This allows the creation of a single curve in a profile plot from several arcs. Since each arc can have its own color it makes it easy to identify specific locations in the data.
    • Hide Unavailable Features and Unused Options – The display options dialog by default only shows options for data that currently exist in SMS. When selecting a coverage type only coverages associated with registered features or models are put into the list. The preferences dialog also only works with registered features. These changes make it easier for users to find the options they want to use by hiding irrelevant features or options.
    • Filmloop Compression options – You can now select a compression codec and associated quality in order to build smaller filmloop files.
    • Functional surface options – It is now possible to color a functional surface using all of the options available for color filled contours.
    • Help system is a Wiki – Rather than distribute chm files with SMS, the help is now found on a Wiki. This allows more people to get involved in updating the information. We are working hard to improve the help contents currently available.
  2. ADCIRC
    • Spatial Attributes – The ADCIRC interface now supports distributed spatial attributes (fort.13) files.
  3. CGWAVE
    • Spatially varied bed friction and floating docks – An updated version of CGWAVE (version 2.0) is now supported in SMS 10.0. This version includes options for spatially varied bed friction and floating docks.
    • Test Problems - A new set of test problems is also provided to illustrate model capabilities
  4. CMS-Flow (previously M2D)
    • Model Improvements – The CMS-Flow interface in SMS 10.0 has been refreshed and updated to support for CMS-Flow v3.5. This version uses XMDF simulation files and can be run in explicit or implicit mode.
    • Interface Improvements – Project management has been simplified, improved model parameter checking, and you can now work with input wave climate datasets outside the steering module.
  5. PTM
    • Model Improvements – The latest version of PTM (version 2.0) is now supported in SMS 10.0. PTM 2.0 supports hydrodynamic input from ADCIRC, ADCIRC3D, CH3D, CMS-Flow, AND CMS-Flow3D. Additional computation and output options are also available in PTM 2.0.
    • Interface Improvements – The PTM Model Control has been redesigned. Mathematical operations can be performed on particle datasets using the Data Calculator. The particle display options have been expanded. New post processing features include creating datasets on a cartesian grid of particle count, accumulation, rate of accumulation, deposition, exposure, concentration, and dosage.
  6. TUFLOW
    • Model Improvements – A new boundary condition type has been added for a stage vs flow rating curve generated automatically from a water surface elevation slope.
    • Interface Improvements – The TUFLOW interface for boundary conditions has been simplified for ease of use. The interface now supports the ability to generate and manage multiple 2D domains to allow for changes in resolution. The interface now also supports 2D flow constrictions to model bridges, peirs, or large culverts in 2D.
  7. CMS-Wave (previously WABED)
    • Version/Feature Update – SMS 10.0 interfaces with CMS-Wave v 1.67. This version of CMS-Wave includes functionality to allow wetting and drying, consider constant or spatially varied bed friction, and use constant or spatially varied forward and/or backward reflection. Parameters have also been added to allow user control of the intensity of diffraction and the type of wave breaking formula to use.
  8. Models Removed From SMS
    • The following models are no longer available or supported in SMS 10.0:
      • SED2D
      • HIVEL